Recent Advancements in KRH-Interpolative-Type Contractions
Abstract
:1. Introduction
2. Preliminaries
- ()
- if iff ;
- ()
- ;
- ()
- .
- ()
- if iff ;
- ()
- ;
- ()
- .
- ()
- if iff ;
- ()
- ;
- ()
- .
- the sequence converges to X if for each such that then
3. Main Results
4. Riech Rus Ćirić Interpolative Contraction
5. Hardy–Roger Interpolative Contractions
6. Application
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Czerwik, S. Contraction mappings in b -metric spaces. In Acta mathematica et Informatica Universitatis Ostraviensis; University of Ostrava: Ostrava, Czechia, 1993. [Google Scholar]
- Chifu, L.C.; Karapinar, E. Admissible hybrid Z-contractions in b-metric spaces. Axioms 2019, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Lukács, S. Kajántó, A. Fixed point theorems for various types of F-contractions in complete b-metric spaces. Fixed Point Theory 2018, 19, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory 2017, 19, 2153–2163. [Google Scholar] [CrossRef]
- Kamran, T.; Samreen, M.; UL Ain, Q. A generalization of b-metric space and some fixed point theorems. Mathematics 2017, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Alqahtani, B.; Fulga, A.; Karapinar, E. Common fixed point results on an extended b-metric space. J. Inequal. Appl. 2018, 1, 158. [Google Scholar] [CrossRef] [PubMed]
- Mitrovic, Z.D.; Isik, H.; Radenovic, S. The new results in extended $ b $-metric spaces and applications. Int. J. Nonlinear Anal. Appl. 2020, 11, 473–482. [Google Scholar]
- Aydi, H.; Karapinar, E.; Roldán López de Hierro, A.F. ω-Interpolative Ćirić–Reich–Rus-type contractions. Mathematics 2019, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Işık, H.; Aydi, H.; Ameer, E.; Lee, J.R.; Arshad, M. On multivalued θ-contraction maps and related applications. Open Math. 2020, 18, 386–399. [Google Scholar] [CrossRef]
- Ali, A.; Uddin, F.; Arshad, M.; Rashid, M. Hybrid fixed point results via generalized dynamic process for F-HRS type contractions with application. Phys. A 2020, 538, 122669. [Google Scholar] [CrossRef]
- Gaba, Y.U.; Karapinar, E. A new approach to the interpolative contractions. Axioms 2019, 8, 110. [Google Scholar] [CrossRef] [Green Version]
- Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef] [Green Version]
- Karpinar, E. Revisiting the Kannan type contractions via interpolation. Adv. Theory Nonlinear Anal. Its Appl. 2018, 2, 85–87. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E.; Agarwal, R.; Aydi, H. Interpolative Reich–Rus–Ciric Type Contractions on Partial Metric Spaces. Mathematics 2018, 6, 256. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E.; Alqahtani, O.; Aydi, H. On interpolative Hardy–Rogers-type contractions. Symmetry 2019, 11, 8. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, B.; Parvaneh, V.; Aydi, H. On extended interpolative Ćirić-Reich-Rus type F-contractions and an application. J. Inequal. Appl. 2019, 2019, 290. [Google Scholar] [CrossRef]
- Ahmad, J.; Al-Mazrooei, A.E.l.; Aydi, H.; Sen, M.D.L. On fixed point results in controlled metric spaces. J. Funct. Spaces 2020, 2020, 2108167. [Google Scholar] [CrossRef]
- Lakzian, H.; Gopal, D.; Sintunavarat, W. New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations. J. Fixed Point Theory A 2016, 18, 251–266. [Google Scholar] [CrossRef]
- Samei, M.E.; Hedayati, V.; Ranjbar, G.K. The existence of solution for k-dimensional system of Langevin Hadamard-type fractional differential inclusions with 2k different fractional orders. Mediterr. J. Math. 2020, 50, 17–36. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, A.; Ali, A.; Al Sulami, H.; Hussain, A. Recent Advancements in KRH-Interpolative-Type Contractions. Symmetry 2023, 15, 1515. https://doi.org/10.3390/sym15081515
Abbas A, Ali A, Al Sulami H, Hussain A. Recent Advancements in KRH-Interpolative-Type Contractions. Symmetry. 2023; 15(8):1515. https://doi.org/10.3390/sym15081515
Chicago/Turabian StyleAbbas, Ansar, Amjad Ali, Hamed Al Sulami, and Aftab Hussain. 2023. "Recent Advancements in KRH-Interpolative-Type Contractions" Symmetry 15, no. 8: 1515. https://doi.org/10.3390/sym15081515
APA StyleAbbas, A., Ali, A., Al Sulami, H., & Hussain, A. (2023). Recent Advancements in KRH-Interpolative-Type Contractions. Symmetry, 15(8), 1515. https://doi.org/10.3390/sym15081515