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Abstract: In this manuscript, we introduce a new notion, admissible hybrid Z-contraction that unifies
several nonlinear and linear contractions in the set-up of a b-metric space. In our main theorem, we
discuss the existence and uniqueness result of such mappings in the context of complete b-metric
space. The given result not only unifies the several existing results in the literature, but also extends
and improves them. We express some consequences of our main theorem by using variant examples
of simulation functions. As applications, the well-posedness and the Ulam–Hyers stability of the
fixed point problem are also studied.
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1. Introduction

Metric fixed point theory can be settled in the intersection of two disciplines; (nonlinear) functional
analysis and topology. From the fixed point researchers’ aspect, the first application of the metric
fixed point theory is on the solution of differential equations. However, according to the point of
view of researchers in applied mathematics, metric fixed point theory is a tool in the solution of a
first-order ordinary differential equation with an initial value. Indeed, fixed point theory appears,
firstly, in the paper of Liouville in 1837, and, later, in the paper of Picard in 1890. In the paper of Picard,
the method of the successive approaches was used to investigate the existence of the solution. In 1922,
Banach reported the first metric fixed point result in the setting of complete norm space that would be
called Banach space later. Examined enough and carefully, we realized that Banach’s theorem is the
abstraction of the successive approaches. The characterization of the nominated fixed point theorem of
Banach, in the complete metric space, was reported by Caccioppoli in 1931. This can be accepted as the
first generalization of Banach’s theorem. After this, a huge number of papers, on the generalization
and extension of Banach’s fixed point theorem, has been released.

Extensions and generalizations of Banach’s theorem are based on two elements: by changing the
structure (abstract space) and by changing the conditions on the considered mappings. The immediate
examples of these new structures are partial metric space, quasi-metric space, semi-metric space,
b-metric space, etc. Among all of these, we shall consider the b-metric that is the most interesting and
most general form of the distance. The notion of b-metric has been discovered by several authors, such
as Bourbaki [1], Bakhtin [2], and Czerwik [3], in different periods of time. Roughly speaking, b-metric
space is derived from metric space by relaxing the triangle inequality.
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As it was mentioned before, the theory has been advanced by reporting several new fixed point
results that are obtained by changing the conditions on the given mappings. As a result, in the
literature, there are so many different types of metric fixed point results that cause a disturbance,
conflict, and disorder. For overcoming this problem, it needs to consider new theorems that cover
several different results. One of the successful results in directions was given in [4] where admissible
mappings were introduced to combine different structures. Other interesting results were given in [5]
in which the notion of the simulation function was defined to combine many distinct contractions.
The notion of the hybrid contractions can also be considered as a result of this trend: in two recent
papers [6,7], the authors introduce a new type of contraction, namely admissible hybrid contraction, in
order to unify several linear, nonlinear and interpolative contractions in the set-up of a complete metric
and b-metric spaces.

One of the main aims of this paper is to unify the several existing results in the literature
by combining the interesting notions: admissible mappings, simulation functions, and hybrid
contractions. Besides unifying the results, we express our results in the most generalized form:
in the setting of a complete b-metric space. Next, we shall consider applications for our obtained
results. In particular, we shall consider the well-posedness and the Ulam–Hyers stability of the
fixed point problem. We shall give some consequences and we shall indicate how one can get more
consequences from the main theorem of the paper. In the next section, we shall give some basic notions
and results to provide a self-contained, easily readable paper.

2. Preliminaries

In this section, we shall collect the necessary notations, notions, and results for the sake of the
completeness of the paper. We first express the definition of the b-metric, as follows.

Definition 1 (See, e.g., Bourbaki [1], Bakhtin [2], and Czerwik [3]). Let X be a nonempty set and let s ≥ 1
be a given real number. A functional d : X× X → [0, ∞) is said to be a b-metric with constant s, if

1. d is symmetric, that is, d(x, y) = d(y, x) for all x, y,
2. d is self-distance, that is, d(x, y) = 0 if and only if x = y,
3. d provides s-weighted triangle inequality, that is

d(x, z) ≤ s[d(x, y) + d(y, z)], for all x, y, z ∈ X.

In this case, the triple (X, d, s) is called a b-metric space with constant s.

It is evident that the notions of b-metric and standard metric coincide in case of s = 1. For more
details on b-metric spaces, see, e.g., [8–11] and corresponding references therein.

In what follows, we express the following immediate interesting examples of b-metric space to
indicate the richness of this abstract space.

Example 1. Let S be any set that has more than three elements. Suppose that S1, S2 are the subsets of S such
that S1 ∩ S2 = ∅ and S = S1 ∪ S2 Let s ≥ 1 be arbitrary. Consider the functional d : X × X → [0, ∞),
which is defined by:

d(a, b) :=


0, a = b,
2s, a, b ∈ S1,
1, otherwise.

It is obvious that (X, d, s) forms a b-metric space.

Another simple, but interesting example is the following:
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Example 2. Let X = R. The function d : R×R→ [0, ∞), defined as

d(x, y) = |x− y|2, (1)

is a b-metric on R with s = 2. Clearly, the first two conditions are satisfied. For the third condition, we have

|x− y|2 = |x− z + z− y|2 = |x− z|2 + 2|x− z||z− y|+ |z− y|2
≤ 2[|x− z|2 + |z− y|2],

since
2|x− z||z− y| ≤ |x− z|2 + |z− y|2.

Thus, (X, d, 2) is a b-metric space.

Example 3. Let X = {a, b, c} and d : X× X → R+
0 such that

d (a, b) = d (b, a) = d (a, c) = d (c, a) = 1,
d (b, c) = d (c, b) = α ≥ 2,
d (a, a) = d (b, b) = d (c, c) = 0.

Then,
d (x, y) ≤ α

2
[d (x, z) + d (z, y)] , for a, b, c ∈ X.

Then, (X, d, α
2 ) is a b-metric space.

Example 4 ([8]). Let B be a Banach space with the zero vector 0B. Suppose that P be a cone whose interior is
non-empty. Suppose also that � forms a partial order with respect to P.

For a non-empty set S, we consider the functional d : X× X → B that fulfills

(M1) 0B � δ(a, b),
(M2) δ(a, b) = 0 if and only if x = y,
(M3) δ(a, b) � δ(a, c) + δ(c, b),
(M4) δ(a, b) = δ(b, a),

for all a, b, c ∈ S. Then, δ is said to be a cone metric (or, Banach-valued metric). Furthermore, the pair (S, δ) is
called a cone metric space (or Banach-valued metric space).

Let E be a Banach space and P be a normal cone in E with the coefficient of normality denoted by K.
Let D : X × X → [0, ∞) be defined by D(x, y) = ||d(x, y)||, where d : X × X → E is a cone metric space.
Then, (X, D, K) forms a b-metric space.

Example 5 (See, e.g., [1]). Let X = Lp[0, 1] be the collections of all real functions x(t) such that∫ 1
0 |x(t)|

pdt < ∞, where t ∈ [0, 1] and 0 < p < 1. For the function d : X× X → R+
0 defined by

d(x, y) :=
(∫ 1

0
|x(t)− y(t)|pdt

)1/p

, for each x, y ∈ Lp[0, 1],

the ordered triple (X, d, 21/p) forms a b-metric space.

Example 6 (See, e.g., [1]). Let p ∈ (0, 1) and let

X = lp(R) =
{

x = {xn} ⊂ R such that
∞

∑
n=1
|xn|p < ∞

}
.
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Define d(x, y) : X× X → [0, ∞) by

d(x, y) =

(
∞

∑
n=1
|xn − yn|p

)1/p

.

Then, (X, d, 21/p) is a b-metric space.

Definition 2 ([12]). A mapping ϕ : [0, ∞) → [0, ∞) is called a comparison function if it is increasing and
ϕn(t)→ 0, as n→ ∞, for any t ∈ [0, ∞).

Example 7. Let γ : [0, ∞)→ [0, ∞) be a function such that

γ(t) = ct for all t ∈ [0, ∞) where c ∈ (0, 1).

Then, γ forms a comparison function.

Example 8. Let β : [0, ∞)→ [0, ∞) be a function such that

β(t) =
t

1 + t
for all t ∈ [0, ∞).

Then, γ forms a comparison function.

Lemma 1 ([10]). If ϕ : [0, ∞)→ [0, ∞) is a comparison function, then:

(1) each iterate ϕk of ϕ, k ≥ 1, is also a comparison function;
(2) ϕ is continuous at 0;
(3) ϕ(t) < t, for any t > 0.

Definition 3 ([12]). A function ϕ : [0, ∞)→ [0, ∞) is said to be a c-comparison function if

(1) ϕ is increasing;

(2) there exists k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms
∞
∑

k=1
vk such that

ϕk+1(t) ≤ aϕk(t) + vk, for k ≥ k0 and any t ∈ [0, ∞).

Remark 1. Note that γ in Example 7 is also c-comparison function. On the other hand, β in Example 8 is not a
c-comparison function.

It is evident that the c-comparison function is not useful to work in the setting of b-metric space
due to the third axiom, s-weighted triangle inequality. In the setting of b-metric space, we should
involve the b-metric constant “s” in our analysis. That is why the b-comparison function was suggested
by Berinde [10]. Indeed, the idea is so simple. In order to investigate fixed point results in the class of
b-metric spaces, the notion of c-comparison function was extended to the b-comparison function by
involving the b-metric constant “s”.

In what follows, we remind readers about the formal definition of the b-comparison function:

Definition 4 ([10]). Let s ≥ 1 be a real number. A mapping ϕ : [0, ∞) → [0, ∞) is called a b-comparison
function if the following conditions are fulfilled:

(1) ϕ is monotone increasing;

(2) there exist k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms
∞
∑

k=1
vk such that

sk+1 ϕk+1(t) ≤ ask ϕk(t) + vk, for k ≥ k0 and any t ∈ [0, ∞).
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Example 9. Let s ≥ 1 be a real number and γ : [0, ∞)→ [0, ∞) be a function such that

γ(t) = ct for all t ∈ [0, ∞) where c ∈ (0,
1
s
).

Then, γ forms a comparison function.

The following lemma is very important in the proof of our results.

Lemma 2 ([10]). If ϕ : [0, ∞)→ [0, ∞) is a b−comparison function, then we have the following conclusions:

(1) the series
∞
∑

k=0
sk ϕk(t) converges for any t ∈ [0, ∞);

(2) the function Sb : [0, ∞) → [0, ∞) defined by Sb(t) =
∞
∑

k=0
sk ϕk(t), t ∈ [0, ∞), is increasing and

continuous at 0.

Remark 2. Due to the Lemma 1.2., any b-comparison function is a comparison function.

Let α : X × X → [0, ∞) be a function. We say that a mapping f : X → X is α-orbital
admissible ([13]) if

α(x, f x) ≥ 1⇒ α( f x, f 2 (x)) ≥ 1.

An α-orbital admissible mapping f is called triangular α-orbital admissible ([13]) if

α(x, y) ≥ 1 and α(y, f y) ≥ 1⇒ α (x, f y) ≥ 1, for every x, y ∈ X.

Lemma 3. Let (X, d) be a b-metric space with constant s ≥ 1, and let f : X → X be triangular α-orbital
admissible mapping having the property that there exists x0 ∈ X such that α(x0, f (x0)) ≥ 1. Then,

α(xn, xm) ≥ 1, for all n, m ∈ N,

where the sequence (xn)n∈N is defined by xn+1 = f (xn), n ∈ N.

Very recently, an interesting auxiliary function, to unify the different type contraction, was defined
by Khojasteh [5] under the name of simulation function.

Definition 5 ([5]). A simulation function is a mapping ζ : [0, ∞)× [0, ∞) → R satisfying the following
conditions:

(ζ1) ζ(t, s) < s− t for all t, s > 0;
(ζ2) if (tn)n∈N , (sn)n∈N are sequences in (0, ∞) such that lim

n→∞
tn = lim

n→∞
sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0. (2)

In the original definition, given in [5], there was an additional but a superfluous condition
ζ(0, 0) = 0. We underline the observation that a function ζ(t, s) := ks− t, where k ∈ [0, 1) for all
s, t ∈ [0, ∞), is an instantaneous example of a simulation function. For further and more interesting
examples, we refer e.g., [5,14–18] and relate references therein.

A self-mapping f , defined on a metric space (X, d), is called a Z-contraction with respect to
ζ ∈ Z [5], if

ζ(d( f x, f y), d(x, y)) ≥ 0 for all x, y ∈ X. (3)

The following is the main results of [5]:
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Theorem 1. Every Z-contraction on a complete metric space has a unique fixed point.

As it is mentioned above, the immediate example ζ(t, s) := ks− t implies the outstanding Banach
contraction mapping principle.

Definition 6 (cf. [7]). Let (X, d) be a b-metric space with constant s ≥ 1. A self-mapping f is called an
admissible hybrid contraction, if there exist ϕ : [0, ∞) → [0, ∞) a b-comparison function and α : X × X →
[0, ∞) such that

α(x, y)d( f x, f y) ≤ ϕ
(
Rq

f (x, y)
)

, (4)

where q ≥ 0 and λi ≥ 0, i = 1, 2, 3, 4, 5 such that ∑5
i=1 λi = 1 and

Rq
f d(x, y) =

{
[N(x, y)]1/q , for q > 0, x, y ∈ X,

P(x, y), for q = 0, x, y ∈ X.
(5)

where
N(x, y) := λ1dq(x, y) + λ2dq(x, f x) + λ3dq(y, f y)

+λ4

(
d(y, f y)(1+d(x, f x))

1+d(x,y)

)q
+ λ5

(
d(y, f x)(1+d(x, f y))

1+d(x,y)

)q
,

and
P(x, y) := dλ1(x, y) · dλ2(x, f x) · dλ3(y, f y)

·
(

d(y, f y)(1+d(x, f x))
1+d(x,y)

)λ4 ·
(

d(x, f y)+d(y, f x)
2s

)λ5
.

Definition 7. Let (X, d) be a b-metric space with constant s ≥ 1. A mapping f : X → X is called admissible
hybrid Z-contraction mapping if there is ϕ : [0, ∞) → [0, ∞) a b-comparison function, α : X × X → [0, ∞)

and ζ ∈ Z such that

ζ
(

α(x, y)d( f x, f y), ϕ
(
Rq

f (x, y)
))
≥ 0, for all x, y ∈ X, (6)

whereRq
f (x, y) is as above.

3. Existence and Uniqueness Results

Theorem 2. Let (X, d) be a complete b-metric space with constant s ≥ 1 and let f : X → X be an admissible
hybrid Z-contraction. Suppose also that:

(i) f is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, f (x0)) ≥ 1;
(iii) either, f is continuous or
(iv) f 2 is continuous and α( f x, x) ≥ 1 for any x ∈ Fix f 2(X).

Then, f has a fixed point.

Proof. Let x0 ∈ X be an arbitrary point. Starting from here, we recursively construct the sequence
(xn)n∈N, as xn = f n (x0) for all n ∈ N. Supposing that there exists some m ∈ N such that f xm =

xm+1 = xm, we find that xm is a fixed point of f and the proof is finished. Thus, we can presume,
from now on, that xn 6= xn−1 for any n ∈ N. Under the assumption (i), f is an admissible hybrid
Z-contraction, if we consider in (6) x = xn−1 and y = xn, we get

0 ≤ ζ(α(xn−1, xn)d( f (xn−1) , f (xn)), ϕ(Rq
f (xn−1, xn)))

< ϕ(Rq
f (xn−1, xn))− α(xn−1, xn)d( f (xn−1) , f (xn)),
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which is equivalent to

α(xn−1, xn)d( f (xn−1) , f (xn)) ≤ ϕ(Rq
f (xn−1, xn)). (7)

Taking into account that f is triangular α-orbital admissible, from (ii) and Lemma 1.3., we have
α(xn−1, xn) ≥ 1. In this way, the above inequality becomes

d(xn, xn+1) ≤ α(xn−1, xn)d( f (xn−1) , f (xn)) < ϕ(Rq
f (xn−1, xn)). (8)

Case 1. For the case q > 0, we have

Rq
f (xn−1, xn) = [λ1dq(xn−1, xn) + λ2dq(xn−1, f (xn−1)) + λ3dq(xn, f (xn))+

+λ4

(
d(xn , f (xn))(1+d(xn−1, f (xn−1))

1+d(xn−1,xn)

)q
+ λ5

(
d(xn , f (xn−1))(1+d(xn−1, f (xn))

1+d(xn−1,xn)

)q] 1
q

= [λ1dq(xn−1, xn) + λ2dq(xn−1, xn) + λ3dq(xn, xn+1)+

+λ4

(
d(xn ,xn+1)(1+d(xn−1,xn))

1+d(xn−1,xn)

)q
+ λ5

(
d(xn ,xn)(1+d(xn−1,xn+1))

1+d(xn−1,xn)

)q] 1
q

=
[
λ1dq(xn−1, xn) + λ2dq(xn−1, xn) + λ3dq(xn, xn+1) + λ4 (d(xn, xn+1))

q] 1
q

= [(λ1 + λ2)dq(xn−1, xn) + (λ3 + λ4)dq(xn, xn+1)]
1/q,

and from (8) we get

d(xn, xn+1) ≤ α(xn−1, xn)d( f (xn−1) , f (xn)) < ϕ(Rq
f (xn−1, xn))

= ϕ([(λ1 + λ2)dq(xn−1, xn) + (λ3 + λ4)dq(xn, xn+1)]
1/q).

(9)

Suppose that d(xn−1, xn) ≤ d(xn, xn+1). Since ϕ is a nondecreasing function, Equation (9) can be
estimated as follows:

d(xn, xn+1) ≤ α(xn−1, xn)d( f (xn−1) , f (xn))

≤ ϕ([(λ1 + λ2)dq(xn−1, xn) + (λ3 + λ4)dq(xn, xn+1)]
1/q)

due to assumption d(xn−1, xn) ≤ d(xn, xn+1) we get

≤ ϕ([λ1 + λ2 + λ3 + λ4)dq(xn, xn+1)]
1/q)

when we rearrange it, we get

= ϕ((λ1 + λ2 + λ3 + λ4)
1/qd(xn, xn+1))

on account of the fact that ϕ(t) < t, we find

< (λ1 + λ2 + λ3 + λ4)
1/qd(xn, xn+1)

since λ1 + λ2 + λ3 + λ4 ≤ 1, we obtain

≤ d(xn, xn+1),

which is a contradiction. Therefore, for every n ∈ N, we have

d(xn, xn+1) < d(xn−1, xn),
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in which case the inequality (8) yields

d(xn, xn+1) ≤ ϕ([(λ1 + λ2)dq(xn−1, xn) + (λ3 + λ4)dq(xn, xn+1)]
1/q)

< ϕ
(
(λ1 + λ2 + λ3 + λ4)

1/qd(xn−1, xn)
)

≤ ϕ (d(xn−1, xn)) ≤ ϕ2 (d(xn−2, xn−1)) ≤ ... ≤ ϕn (d(x0, x1)) .

(10)

Now let m, p ∈ N such that p > m. Using the triangle inequality and (10), we have

d(xm, xp) ≤ sd(xm, xm+1) + s2d(xm+1, xm+2) + . . . + sp−m · d(xp−1, xp)

≤ sϕm((d(x0, x1)) + s2 ϕm+1(d(x0, x1)) + . . . + sp−m+1 ϕp(d(x0, x1))

= 1
sm−1

(
sm ϕm((d(x0, x1)) + sm+1 ϕm+1(d(x0, x1)) + . . . + sp ϕp(d(x0, x1))

)
= 1

sm−1

p
∑

j=m
sj ϕj((d(x0, x1)).

Since ϕ is a b-comparison function, the series
∞
∑

j=0
ϕj(d(x0, x1)) is convergent. Denoting by Sn =

n
∑

j=0
ϕj(d(x0, x1)), the above inequality becomes

d(xm, xp) ≤
1

sm−1

(
Sp−1 − Sm−1

)
,

and as m, p→ ∞ we get
d(xm, xp)→ 0, (11)

which tells us that (xn)n∈N is a Cauchy sequence on a complete b-metric space, so there exists x∗ ∈ X
such that

lim
n→∞

d(xnx∗) = 0. (12)

We shall prove that x∗ is a fixed point of f . If f is continuous, (due to assumption (iii))

d (x∗, f (x∗)) = lim
n→∞

d (xn, f (xn)) = lim
n→∞

d(xn, xn+1) = 0,

so we get that f (x∗) = x∗, that is, x∗ is a fixed point of f .
Suppose now that f 2 is continuous. It follows that f 2 (x∗) = lim

n→∞
f 2 (xn) = x∗. We shall prove

that f (x∗) = x∗. Supposing that, on the contrary, f (x∗) 6= x∗, we have from (6)

0 ≤ ζ(α( f (x∗) , x∗)d( f 2 (x∗) , f (x∗)), ϕ(Rq
f ( f (x∗) , x∗)))

= ϕ(Rq
f ( f (x∗) , x∗))− α( f (x∗) , x∗)d( f 2 (x∗) , f (x∗)),
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which implies

d(x∗, f (x∗)) = d( f 2 (x∗) , f (x∗)) ≤ α( f (x∗) , x∗)d( f (x∗) , x∗)

since ϕ(t) < t, we get

≤ ϕ(Rq
f ( f (x∗) , x∗)) < Rq

f ( f (x∗) , x∗); due to (5), we have

=
[
λ1dq( f (x∗) , x∗) + λ2dq(x∗, f (x∗)) + λ3dq( f (x∗) , f 2 (x∗))+

λ4

(
d(x∗ , f (x∗))(1+d( f (x∗), f 2(x∗))

1+d(x∗ , f (x∗))

)q
+ λ5

(
d( f (x∗), f (x∗))(1+d(x∗ , f 2(x∗))

1+d(x∗ , f (x∗))

)q
] 1

q

= [λ1dq( f (x∗) , x∗) + λ2dq(x∗, f (x∗)) + λ3dq( f (x∗) , x∗)+

+λ4

(
d(x∗ , f (x∗))(1+d( f (x∗),x∗))

1+d(x∗ , f (x∗))

)q
+ λ5

(
d( f (x∗), f (x∗))(1+d(x∗ ,x∗))

1+d(x∗ , f (x∗))

)q] 1
q

= [(λ1 + λ2 + λ3 + λ4)dq(x∗, f (x∗))]
1
q

= [(λ1 + λ2 + λ3 + λ4)]
1
q d(x∗, f (x∗))

≤ d(x∗, f (x∗)).

This is a contradiction, so that f (x∗) = x∗.
Case 2. For the case q = 0, if we consider x = xn−1 and y = xn, we have

Rq
f (xn−1, xn) = dλ1(xn−1, xn) · dλ2(xn−1, f (xn−1)) · dλ3(xn, f (xn))·

·
[

d(xn , f (xn))(1+d(xn−1, f xn−1))
1+d(xn−1,xn)

]λ4 ·
[

d(xn−1, f (xn))+d(xn , f xn−1))
2s

]λ5

= dλ1(xn−1, xn) · dλ2(xn−1, xn) · dλ3(xn, xn+1)·

·
[

d(xn ,xn+1)(1+d(xn−1,xn))
1+d(xn−1,xn)

]λ4 ·
[

d(xn−1,xn+1)+d(xn ,xn))
2s

]λ5

= dλ1(xn−1, xn) · dλ2(xn−1, xn) · dλ3(xn, xn+1) · dλ4(xn, xn+1) ·
[

d(xn−1,xn+1)
2s

]λ5
.

Employing the triangle inequality, we have

Rq
f (xn−1, xn) ≤ dλ1(xn−1, xn) · dλ2(xn−1, xn) · dλ3(xn, xn+1) · dλ4(xn, xn+1)

·
[

d(xn−1,xn)+d(xn ,xn+1)
2

]λ5
.

(13)

Using the following inequality(
a + b

2

)k
≤ ak + bk

2
, for all a, b, k > 0,

(13) becomes
Rq

f (xn−1, xn) ≤ dλ1(xn−1, xn) · dλ2(xn−1, xn) · dλ3(xn, xn+1)

·dλ4(xn, xn+1) · dλ5 (xn−1,xn)+dλ5 (xn ,xn+1)
2 ,

and, from (6),
0 ≤ ζ(α(xn−1, xn)d( f (xn−1) , f (xn)), ϕ(Rq

f (xn−1, xn)))

< ϕ(Rq
f (xn−1, xn))− α(xn−1, xn)d( f (xn−1) , f (xn)),

which yields that

d(xn, xn+1) ≤ α(xn−1, xn)d( f (xn−1) , f (xn)) ≤ ϕ(Rq
f (xn−1, xn)). (14)
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Supposing that d(xn−1, xn) ≤ d(xn, xn+1), since ϕ is a nondecreasing function, we have

d(xn, xn+1) < dλ1+λ2+λ3+λ4+λ5(xn, xn+1) = d(xn, xn+1),

which is a contradiction. Then, from (14), inductively, we obtain

d(xn, xn+1) ≤ ϕ(Rq
f (xn−1, xn)) < ϕn(d(x0, x1)). (15)

By using the same arguments as the case q > 0, we shall easily obtain that (xn)n∈N is a Cauchy
sequence in a complete metric space and thus there exists x∗ such that lim

n→∞
xn = x∗.

We claim that x∗ is a fixed point of f .
Under the assumption that f is continuous, we have

d (x∗, f (x∗)) = lim
n→∞

d (xn, f (xn)) = lim
n→∞

d(xn, xn+1) = 0,

and together with the uniqueness of limit, f (x∗) = x∗. In addition, if f 2 is continuous, as in case 1, we
have that f 2 (x∗) = x∗ and suppose that f (x∗) 6= x∗. Then, we get

0 ≤ ζ(α( f (x∗) , x∗)d( f 2 (x∗) , f (x∗)), ϕ(Rq
f ( f 2 (x∗) , f (x∗)))

= ϕ(Rq
f ( f 2 (x∗) , f (x∗)))− α( f (x∗) , x∗)d( f 2 (x∗) , f (x∗)),

which implies
d(x∗, f (x∗)) = d( f 2 (x∗) , f (x∗))

≤ α( f (x∗) , x∗)d( f 2 (x∗) , f (x∗))

≤ ϕ(Rq
f ( f 2 (x∗) , f (x∗)) = ϕ(Rq

f (x∗, f (x∗)),

where

Rq
f (x∗, f (x∗)) = dλ1+λ2+λ3(x∗, f (x∗)) ·

[
d(x∗ , f (x∗))(1+d(x∗ , f (x∗))

1+d(x∗ , f (x∗))

]λ4 ·
[

d(x∗ ,x∗)+d( f (x∗), f (x∗))
2s

]λ5

= dλ1+λ2+λ3+λ4(x∗, f (x∗)) < d(x∗, f (x∗)).

Hence, we have

d(x∗, f (x∗)) ≤ ϕ(Rq
f (x∗, f (x∗)) < ϕ(d(x∗, f (x∗)) < d(x∗, f (x∗)),

which is a contradiction.

Theorem 3. In the hypothesis of Theorem 2, if we assume supplementary that

α(x∗, y∗) ≥ 1,

for any x∗, y∗ ∈ Fix f (X), then the fixed point of f is unique.

Proof. Let y∗ ∈ X be another fixed point of f . Suppose that x∗ 6= y∗. In the case that q > 0, using (6),
we have:

0 ≤ ζ(α (x∗, y∗) d( f (x∗) , f (y∗)), ϕ(Rq
f (x∗, y∗)))

< ϕ(Rq
f (x∗, y∗))− α (x∗, y∗) d( f (x∗) , f (y∗)),
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which yields that

d(x∗, y∗) ≤ α (x∗, y∗) d( f (x∗) , f (y∗)) ≤ ϕ(Rq
f (x∗, y∗)) < Rq

f (x∗, y∗)

=
[
λ1d(x∗, y∗) + λ2dq(x∗, f (x∗)) + λ3dq(y∗, f (y∗)) + λ4

(
d(y∗ , f (y∗))(1+d(x∗ , f (x∗))

1+d(x∗ ,y∗)

)q
+

λ5

(
d(y∗ , f (x∗))(1+d(x∗ , f (y∗))

1+d(x∗ ,y∗)

)q] 1
q

= (λ1 + λ5)
1
q d(x∗, y∗) < d(x∗, y∗),

which is a contradiction.
In the case that q = 0, if we suppose that x∗ 6= y∗, then we obtain that 0 < d(x∗, y∗) < 0, which is

a contradiction.
Thus, x∗ = y∗, so that f possesses exactly one fixed point.

Example 10. Let X = [0, 2], d : X × X → [0, ∞) , d(x, y) = |x− y|2 for all x, y ∈ X. Consider

that the mapping f : X → X is defined by f (x) =

{
1/2, i f x ∈ [0, 1]

x/2, i f x ∈ (1, 2]
and the function α(x, y) =

2, i f x, y ∈ [0, 1],

1, i f x = 0, y = 2

0, otherwise.

and the b-comparison function ϕ : [0, ∞)→ [0, ∞), ϕ(t) = t
2 , ζ (t, s) = 1

2 s− t,

We can easily observe that:

1. (X, d) is a complete b-metric space with the constant s = 2;
2. f triangular α-orbital admissible;
3. for x0 ∈ [0, 1], f (x0) =

1
2 ∈ [0, 1] and hence α (x0, f (x0)) = 2 > 1;

4. f is continuous;
5. f 2 (x) = 1

2 is continuous. Moreover, for x = 1
2 ∈ Fix f 2 (X), we have α

(
f
(

1
2

)
. 1
2

)
= α

(
1
2 , 1

2

)
= 2 > 1;

6. ζ
(

α(x, y)d( f x, f y), ϕ
(
Rq

f (x, y)
))
≥ 0.

If x, y ∈ [0, 1], then f x = f y = 1
2 and hence d ( f x, f y) = 0. We have

ζ
(

0, ϕ
(
Rq

f (x, y)
))

=
1
2

ϕ
(
Rq

f (x, y)
)
≥ 0, for all x, y ∈ [0, 1],

and hence
ζ
(

α(x, y)d( f x, f y), ϕ
(
Rq

f (x, y)
))
≥ 0, for all x, y ∈ [0, 1].

If x = 0 and y = 2, then if we consider q = 2, λ1 = λ2 = λ3 = λ4 = λ5 = 1
5 , then we have

ζ
(

α(0, 2)d( f (0) , f (2)), ϕ
(
Rq

f (0, 2)
))

= 1
2 ϕ
(
Rq

f (0, 2)
)
− α(0, 2)d( f (0) , f (2)) =<=

= 1
4

[
1
5 d2(0, 2) + 1

5 d2(0, f (0)) + 1
5 d2(2, f (2))+

+ 1
5

(
d(2, f (2))(1+d(0, f (0)))

1+d(0,2)

)2
+ 1

5

(
d(2, f (0))(1+d(0, f (2)))

1+d(0,2)

)2
] 1

2

−α(0, 2)d
(

1
2 , 1
)

= 1
4

[
1
5

(
16 + 1

16 + 1 + 1
16 + 81

100

)] 1
2

= 1
4
( 3587

1000
) 1

2 − 1
4 ≥ 0.

Hence,
ζ
(

α(0, 2)d( f (0) , f (2)), ϕ
(
Rq

f (0, 2)
))
≥ 0.
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In all other cases, α(x, y) = 0 and

ζ
(

0, ϕ
(
Rq

f (x, y)
))

=
1
2

ϕ
(
Rq

f (x, y)
)
≥ 0.

Thus, we obtain that f is an admissible hybrid Z-contraction which satisfies the assumptions of Theorem 2
and then x = 1

2 is the fixed point of f .

Remark 3. If, in the above example, we consider f (x) =

{
1/3, if x ∈ [0, 1]

x/2, if x ∈ (1, 2]
, then f is not continuous,

but f 2 (x) = 1
3 and for x = 1

3 ∈ Fix f 2 (X), we have α
(

f
(

1
3

)
. 1
3

)
= α

(
1
3 , 1

3

)
= 2 > 1.

Let Φ be the collection of all auxiliary functions φ : [0, ∞)→[0, ∞) which are continuous and
φ(t) = 0 if and only if t = 0.

Theorem 4. Let (X, d) be a complete b-metric space with constant s ≥ 1, f : X → X and α : X×X → [0, ∞).
Suppose that there exist two functions φ1, φ2 ∈ Φ, with φ1(t) < t ≤ φ2(t), for all t > 0, such that

φ2 (α(x, y)d( f x, f y)) ≤ φ1

(
Rq

f (x, y)
)

. (16)

Furthermore, we suppose that:

(i) f is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, f (x0)) ≥ 1;
(iii) either, f is continuous or
(iv) f 2 is continuous and α( f x, x) ≥ 1 for any x ∈ Fix f 2(X).
(v) if x∗, y∗ ∈ Fix f (X), then α(x∗, y∗) ≥ 1.

Then, f has a unique fixed point.

Proof. Let ζ (t, s) = φ1 (s)− φ2 (t) . According to Example 10, if φ1, φ2 ∈ Φ have the property φ1(t) <
t ≤ φ2(t) for all t > 0, then ζ ∈ Z . Thus, the desired results follow from Theorems 2 and 3.

Theorem 5. Let (X, d) be a complete b-metric space with constant s ≥ 1 , f : X → X and α : X×X → [0, ∞).
Suppose that there exists a function φ ∈ Φ, such that

α(x, y)d( f x, f y) ≤ Rq
f (x, y)− φ

(
Rq

f (x, y)
)

. (17)

Furthermore, we suppose that

(i) f is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, f (x0)) ≥ 1;
(iii) either, f is continuous or
(iv) f 2 is continuous and α( f x, x) ≥ 1 for any x ∈ Fix f 2(X).

(v) if x∗, y∗ ∈ Fix f (X), then α(x∗, y∗) ≥ 1.

Then, f has a unique fixed point.

Proof. Let ζ (t, s) = s− φ (s))− t. According to Example 10, ζ ∈ Z . Thus, the desired results follow
from Theorems 2 and 3.
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Theorem 6. Let (X, d) be a complete b-metric space with constant s ≥ 1 , f : X → X and α : X×X → [0, ∞).
Suppose that there exists a function µ : [0, ∞)→ [0, ∞) such that

∫ ε
0 µ(u)du exists and

∫ ε
0 µ(u)du > ε, for each

ε > 0, with the property that

α(x, y)d( f x, f y) ≤
∫ Rq

f (x,y)

0
µ(u)du. (18)

Furthermore, we suppose that

(i) f is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, f (x0)) ≥ 1;
(iii) either, f is continuous or
(iv) f 2 is continuous and α( f x, x) ≥ 1 for any x ∈ Fix f 2(X).
(v) if x∗, y∗ ∈ Fix f (X), then α(x∗, y∗) ≥ 1.

Then, f has a unique fixed point.

Proof. Let ζ (t, s) = s−
∫ t

0 µ(u)du. According to Example 10, ζ ∈ Z . Thus, the desired results follow
from Theorems 2 and 3.

Let Φ be the class of auxiliary functions φ : [0, ∞) → [0, ∞) that are continuous functions and
µ(t) = 0 if and only if, t = 0.

The following example is derived from [5,14,15].

Example 11. (See, e.g., [5,14,15]) Let φi ∈ Φ for i = 1, 2, 3 and σj : R+
0 ×R+

0 → R for j = 1, 2, 3, 4, 5, 6.
Each of the functions defined below is an example of simulation functions:

(E1) σ2(t, s) = s− φ3(s)− t for all t, s ≥ 0.
(E2) σ4(t, s) = f (s) − t for all t, s ≥ 0, t, s ≥ 0, where the function f : [0, ∞) → [0, ∞) is upper

semi-continuous and such that f (t) < t for all t > 0 and f (0) = 0.

(E3) σ5(t, s) = s− g(t, s)
h(t, s)

for all t, s ≥ 0, where g, h : [0, ∞)2 → (0, ∞) are two continuous functions with

respect to each variable such that g(t, s) > h(t, s) for all t, s > 0.

(E4) σ6(t, s) = s η(s) − t for all t, s ≥ 0, where η : [0, ∞) → [0, 1) is a function with the property
lim supt→r+ η(t) < 1 for all r > 0

Remark 4. By using the examples above, we may derive more consequences of our results.

4. Well Posedness and Ulam–Hyers Stability

Considered as a type of data dependence, the notion of Ulam stability was started by Ulam [19,20]
and developed by Hyers [21], Rassias [22], etc. In this section, we investigate the general Ulam type
stability in sense of a fixed point problem as well the well posedness of the fixed point problem.

Suppose that f : X → X is a self-mapping on a b-metric space (X, d) with the constant s > 1 and
let us consider the following fixed point problem:

x = f (x). (19)

Definition 8. The fixed point problem (19) is well-posed if

(i) Fix f (X) = {x∗} ;
(ii) If (xn)n∈N is a sequence such that d (xn, f (xn))→ 0, as n→ ∞, then xn → x∗, as n→ ∞.
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Theorem 7. Let (X, d) be a complete b-metric space with constant s > 1. Suppose that all the hypotheses of
Theorem 3 hold, and q > 0. Additionally, we suppose that for any sequence (xn)n∈N, with d (xn, f (xn))→ 0,
as n → ∞, we have α (xn, x∗) ≥ 1, for all n ∈ N, where x∗ ∈ Fix f (X) . If λ1 + λ5 < 1

γ2(q) , where

γ(q) = max
{

1, 2q−1sq}, then the fixed point problem (19) is well-posed.

Proof. Taking into account the supplementary condition, since Fix f (X) = x∗, u sin g (6), we have

0 ≤ ζ(α (xn, x∗) d( f (xn) , f (x∗)), ϕ(Rq
f (xn, x∗)))

< ϕ(Rq
f (xn, x∗))− α (xn, x∗) d( f (xn) , f (x∗)).

We have

d(xn, x∗) ≤ sd(xn, f (xn)) + sd( f (xn) , f (x∗)) ≤ sd(xn, f (xn)) + sα(xn, x∗)d( f (xn) , f (x∗))

≤ sd(xn, f (xn)) + sϕ(Rq
f (xn, x∗)) < sd(xn, f (xn)) + sRq

f (xn, x∗)

≤ s
[
λ1dq(xn, x∗) + λ2dq(xn, f (xn)) + λ3dq(x∗, f (x∗)) + λ4

(
d(x∗ , f (x∗))(1+d(xn , f (xn)))

1+d(xn ,x∗)

)q
+

+λ5

(
d(x∗ , f (xn))(1+d(xn , f (x∗)))

1+d(xn ,x∗)

)q] 1
q
+ sd(xn, f (xn))

= s [λ1dq(xn, x∗) + λ2dq(xn, f (xn)) + λ5dq(x∗, f (xn)]
1
q + sd(xn, f (xn))

≤ s
[
λ1dq(xn, x∗) + λ2dq(xn, f (xn)) + sqλ5 (d (x∗, xn) + d(xn, f (xn))

q] 1
q + sd(xn, f (xn))

≤ s
[
λ1dq(xn, x∗) + λ2dq(xn, f (xn)) + 2q−1sqλ5dq (x∗, xn) + 2q−1sqλ5dq(xn, f (xn)

] 1
q +

+sd(xn, f (xn)).

In this way, we obtain

dq(xn, x∗) ≤ 2q−1sqλ1dq(xn, x∗) + 2q−1sqλ2dq(xn, f (xn)) + 22q−2s2qλ5dq (x∗, xn) +

+22q−2s2qλ5dq(xn, f (xn)) + 2q−1sqdq(xn, f (xn))

or (
1− 2q−1sqλ1 − 22q−2s2qλ5

)
dq(xn, x∗) ≤ 2q−1sq

(
1 + λ2 + 2q−1sqλ5

)q
dq(xn, f (xn)).

From here, we obtain

dq(xn, x∗) ≤ (1 + λ2 + γ(q)λ5)γ(q)
1− γ(q)λ1 − γ2(q)λ5

dq(xn, f (xn)).

Letting n→ ∞ in the above inequality and keeping in mind that lim
n→∞

d(xn, f (xn)) = 0, we obtain

lim
n→∞

d(xn, x∗) = 0,

that is, the fixed point Equation (19) is well-posed.

Definition 9. The fixed point problem (19) is called generalized Ulam–Hyers stable if and only if there exists
ρ : [0, ∞)→ [0, ∞) is increasing, continuous in 0 and ρ(0) = 0, such that for each ε > 0 and for each y∗ ∈ X,
which satisfy the inequality

d(y, f (y)) ≤ ε, (20)

there exists a solution x∗ of the fixed point problem (19) such that

d(y∗, x∗) ≤ ρ(ε).
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If there exists c > 0 such that ρ(t) := c · t, for each t ∈ R+, then the fixed point problem (19) is said to be
Ulam–Hyers stable.

Before stating our theorem, we underline that Ulam–Hyers stability can be potentially applicable
to the study of switched dynamics, see e.g., [23], and the related references therein.

Theorem 8. Let (X, d) be a complete b-metric space with constant s > 1. Suppose that all the hypotheses
of Theorem 3 hold, and q > 0. Additionally, we suppose that α (y∗, x∗) ≥ 1, for all y∗ ∈ X verifying (20)
and x∗ ∈ Fix f (X) . If λ1 + λ5 < 1

γ2(q) , where γ(q) = max
{

1, 2q−1sq}, then the fixed point problem (19) is
Ulam–Hyers stable.

Proof. Using (6),
0 ≤ ζ(α (y∗, x∗) d( f (y∗) , f (x∗)), ϕ(Rq

f (y
∗, x∗)))

< ϕ(Rq
f (y
∗, x∗))− α (y∗, x∗) d( f (y∗) , f (x∗))

d(y∗, x∗) = d(y∗, f (x∗)) ≤ sd( f (y∗) , f (x∗)) + sd(y∗, f (y∗))

≤ sα(y∗, x∗)d( f (y∗) , f (x∗)) + sd(y∗, f (y∗))
≤ sϕ(Rq

f (y
∗, x∗)) + sε < sRq

f (y
∗, x∗)) + sε

≤ s [λ1dq(y∗, x∗) + λ2dq(y∗, f (y∗)) + λ3dq(x∗, f (x∗)) +

λ4

(
d(x∗ , f (x∗))(1+d(x∗ , f (x∗))

1+d(y∗ ,x∗)

)q
+ λ5

(
d(x∗ , f (y∗))(1+d(y∗ , f (x∗)))

1+d(y∗ ,x∗)

)q] 1
q
+ sε

= s [λ1dq(y∗, x∗) + λ2εq + λ5dq(x∗, f (y∗)]
1
q + sε

≤ s
[
λ1dq(y∗, x∗) + λ2εq + sqλ5 (d (y∗, x∗) + d(y∗, f (y∗))q] 1

q + sε

≤ s
[
λ1dq(y∗, x∗) + λ2εq + 2q−1sqλ5dq (y∗, x∗) + 2q−1sqλ5dq (y∗, f (y∗))

] 1
q + sε

≤ s
[
λ1dq(y∗, x∗) + λ2εq + 2q−1sqλ5dq (y∗, x∗) + 2q−1sqλ5εq] 1

q + sε.

In this way, we obtain

dq(y∗, x∗) ≤ 2q−1sqλ1dq(y∗, x∗) + 2q−1sqλ2εq + 22q−2s2qλ5dq (y∗, x∗) +
+22q−2s2qλ5εq + 2q−1sqεq

or (
1− 2q−1sqλ1 − 22q−2s2qλ5

)
dq(y∗, x∗) ≤ 2q−1sq

(
1 + λ2 + 2q−1sqλ5

)q
εq.

From here, we obtain

dq(y∗, x∗) ≤ (1 + λ2 + γ(q)λ5)γ(q)
1− γ(q)λ1 − γ2(q)λ5

εq.

Hence,
dq(y∗, x∗) ≤ cεq,

where c = (1+λ2+γ(q)λ5)γ(q)
1−γ(q)λ1−γ2(q)λ5

, for any q > 0 and λ1, λ5 ∈ [0, 1) such that λ1 + λ5 < 1
γ2(q) .

5. Conclusions

In this paper, we unify, extend, and improve several existing fixed point theorems by introducing
the notion of admissible hybrid Z-contraction in the setting of complete b-metric spaces. Consequently,
all presented results valid in the setting of complete metric space by letting s = 1. On the other hand,
unifying several existing results in the literature, we have used admissible mappings, simulation
functions, and hybrid contractions. We need to underline the fact that, by setting admissible
function α in a proper way, one can get several new consequences of the existence results in the
setting of (i) standard metric space, (ii) metric space endowed a partial order on it, and (iii) cyclic
contraction. One can easily get these consequences by using the techniques in [4]. Furthermore, for the
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different examples of simulation functions (as we showed in Theorems 5 and 6), one can get more new
corollaries. Lastly, by regarding hybrid contraction approaches, one can get several more consequences,
by following the techniques in [21,24–26].

Besides expressing a more generalized result in the setting of a complete b-metric space, we also
present some applications for our obtained results. In particular, we shall consider the well-posedness
and the Ulam–Hyers stability of the fixed point problem. We note that the word ‘hybrid’ has been
used in different ways, in particular, in applicable nonlinear fields, see, e.g., [27,28].
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21. Mitrović, Z.D.; Aydi, M.S. Noorani, H. Qawaqneh, The weight inequalities on Reich type theorem in b-metric

spaces. J. Math. Comput. Sci. 2019, 19, 51–570. [CrossRef]

http://dx.doi.org/10.1155/2012/793486
http://dx.doi.org/10.2298/FIL1506189K
http://dx.doi.org/10.1515/dema-2019-0037
http://dx.doi.org/10.3390/math7070578
http://dx.doi.org/10.22436/jnsa.009.03.43
http://dx.doi.org/10.3390/math7040308
http://dx.doi.org/10.1186/1687-1812-2014-190
http://dx.doi.org/10.1155/2014/269286
http://dx.doi.org/10.1016/j.cam.2014.07.011
http://dx.doi.org/10.1155/2017/2068163
http://dx.doi.org/10.3390/math6100208
http://dx.doi.org/10.22436/jmcs.019.01.07


Axioms 2020, 9, 2 17 of 17

22. Rassias, T.M. On the stability of linear mapping in Banach Spaces. Proc. Am. Math. Soc. 1978, 72, 297–300.
[CrossRef]

23. Shang, Y. Subspace confinement for switched linear systems. Forum Math. 2017, 29, 693–699. [CrossRef]
24. Karapinar, E. Revisiting the Kannan Type Contractions via Interpolation. Adv. Theory Nonlinear Anal. Appl.

2018, 2, 85–87. [CrossRef]
25. Karapinar, E.; Agarwal, R.; Aydi, H. Interpolative Reich-Rus-Ćirić Type Contractions on Partial Metric Spaces.
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