Efficient Application of the Factorized Form of the Unitary Coupled-Cluster Ansatz for the Variational Quantum Eigensolver Algorithm by Using Linear Combination of Unitaries
Abstract
:1. Introduction
2. Background
2.1. SU(2) Identity for Individual UCC Factors
2.2. Jordan–Wigner Transformation of the SU(2) Identity
2.3. Linear Combination of Unitaries
3. Circuit Construction
3.1. Prepare Subroutine
3.2. Select() Subroutine for Rank-2 Factors
3.3. Select() for Arbitrary Rank-n
3.4. Gate Counts
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aspuru-Guzik, A. Simulated Quantum Computation of Molecular Energies. Science 2005, 309, 1704–1707. [Google Scholar] [CrossRef] [Green Version]
- Whitfield, J.D.; Biamonte, J.; Aspuru-Guzik, A. Simulation of electronic structure Hamiltonians using Quantum Computers. Mol. Phys. 2011, 109, 735–750. [Google Scholar] [CrossRef] [Green Version]
- Sherrill, C.D.; Schaefer, H.F. The Configuration Interaction Method: Advances in Highly Correlated Approaches. Adv. Quantum Chem. 1999, 34, 143–269. [Google Scholar] [CrossRef]
- Bartlett, R.J.; Purvis, G.D. Many-body perturbation theory, coupled-pair many-electron theory, and the importance of quadruple excitations for the correlation problem. Int. J. Quantum Chem. 1978, 14, 561–581. [Google Scholar] [CrossRef]
- Bartlett, R.J.; Musiał, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 2007, 79, 291–352. [Google Scholar] [CrossRef] [Green Version]
- Purvis, G.D.; Bartlett, R.J. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys. 1982, 76, 1910–1918. [Google Scholar] [CrossRef]
- Anand, A.; Schleich, P.; Alperin-Lea, S.; Jensen, P.W.; Sim, S.; Díaz-Tinoco, M.; Kottmann, J.S.; Degroote, M.; Izmaylov, A.F.; Aspuru-Guzik, A.; et al. A quantum computing view on unitary coupled cluster theory. Chem. Soc. Rev. 2022, 51, 1659–1684. [Google Scholar] [CrossRef]
- Peruzzo, A.; Mcclean, J.; Shadbolt, P.; Yung, M.H.; Zhou, X.Q.; Love, P.J.; Aspuru-Guzik, A.; O’Brien, J.L. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 2014, 5, 4213. [Google Scholar] [CrossRef] [Green Version]
- Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Helgaker, T.J. Molecular Electronic-Structure Theory; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Szabo, A.; Ostlund, N.S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory; Dover Publications: Mineola, NY, USA, 2006. [Google Scholar]
- Taketa, H.; Huzinaga, S.; O-Ohata, K. Gaussian-Expansion Methods for Molecular Integrals. J. Phys. Soc. Jpn. 1966, 21, 2313–2324. [Google Scholar] [CrossRef]
- Shavitt, I.; Bartlett, R.J. Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory; Cambridge University Press: Cambridge, MA, USA, 2009. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, R.J.; Kucharski, S.A.; Noga, J. Alternative coupled-cluster ansätze II. The unitary coupled-cluster method. Chem. Phys. Lett. 1989, 155, 133–140. [Google Scholar] [CrossRef]
- Schaefer, H.F. Methods of Electronic Structure Theory; Springer Science Business Media, LLC: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Cooper, B.; Knowles, P.J. Benchmark studies of variational, unitary and extended coupled cluster methods. J. Chem. Phys. 2010, 133, 234102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Cheng, H.P.; Freericks, J.K. Quantum-Inspired Algorithm for the Factorized Form of Unitary Coupled Cluster Theory. J. Chem. Theory Comput. 2021, 17, 841–847. [Google Scholar] [CrossRef]
- Romero, J.; Babbush, R.; Mcclean, J.R.; Hempel, C.; Love, P.J.; Aspuru-Guzik, A. Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz. Quantum Sci. Technol. 2018, 4, 014008. [Google Scholar] [CrossRef] [Green Version]
- Barkoutsos, P.K.; Gonthier, J.F.; Sokolov, I.; Moll, N.; Salis, G.; Fuhrer, A.; Ganzhorn, M.; Egger, D.J.; Troyer, M.; Mezzacapo, A.; et al. Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions. Phys. Rev. A 2018, 98, 022322. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Lee, J.T.; Freericks, J.K. Decomposition of high-rank factorized unitary coupled-cluster operators using ancilla and multiqubit controlled low-rank counterparts. Phys. Rev. A 2022, 105. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Motta, M.; Ye, E.; McClean, J.R.; Li, Z.; Minnich, A.J.; Babbush, R.; Chan, G.K.L. Low rank representations for quantum simulation of electronic structure. NPJ Quantum Inf. 2021, 7, 83. [Google Scholar] [CrossRef]
- Wan, K. Exponentially faster implementations of select(h) for Fermionic Hamiltonians. Quantum 2021, 5, 380. [Google Scholar] [CrossRef]
- Wang, Q.; Li, M.; Monroe, C.; Nam, Y. Resource-optimized fermionic local-Hamiltonian simulation on a quantum computer for Quantum Chemistry. Quantum 2021, 5, 509. [Google Scholar] [CrossRef]
- Cowtan, A.; Dilkes, S.; Duncan, R.; Simmons, W.; Sivarajah, S. Phase gadget synthesis for shallow circuits. Electron. Proc. Theor. Comput. Sci. 2020, 318, 213–228. [Google Scholar] [CrossRef]
- Magoulas, I.; Evangelista, F.A. CNOT-efficient circuits for arbitrary rank many-body fermionic and qubit excitations. J. Chem. Theory Comput. 2023, 19, 822–836. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Lee, J.T.; Freericks, J.K. Test of the unitary coupled-cluster variational quantum eigensolver for a simple strongly correlated condensed-matter system. Mod. Phys. Lett. B 2020, 34, 2040049. [Google Scholar] [CrossRef]
- Freericks, J.K. Operator relationship between conventional coupled cluster and unitary coupled cluster. Symmetry 2022, 14, 494. [Google Scholar] [CrossRef]
- Childs, A.M.; Wiebe, N. Hamiltonian simulation using linear combinations of unitary operations. Quantum Inf. Comput. 2012, 12, 901–924. [Google Scholar] [CrossRef]
- Berry, D.W.; Childs, A.M.; Cleve, R.; Kothari, R.; Somma, R.D. Simulating Hamiltonian dynamics with a truncated Taylor series. Phys. Rev. Lett. 2015, 114, 090502. [Google Scholar] [CrossRef] [Green Version]
- da Silva, A.J.; Park, D.K. Linear-depth quantum circuits for multiqubit controlled gates. Phys. Rev. A 2022, 106, 042602. [Google Scholar] [CrossRef]
- Li, J.; Yao, Y.; Holmes, A.A.; Otten, M.; Sun, Q.; Sharma, S.; Umrigar, C.J. Accurate many-body electronic structure near the basis set limit: Application to the chromium dimer. Phys. Rev. Res. 2020, 2, 012015. [Google Scholar] [CrossRef] [Green Version]
- Larsson, H.R.; Zhai, H.; Umrigar, C.J.; Chan, G.K.L. The chromium dimer: Closing a chapter of Quantum Chemistry. J. Am. Chem. Soc. 2022, 144, 15932–15937. [Google Scholar] [CrossRef] [PubMed]
Subcircuit | ||||
---|---|---|---|---|
1 | H | H | H | |
2 | H | |||
3 | H | |||
4 | H | H | H | |
5 | H | H | H | |
6 | H | H | H | |
7 | H | |||
8 | H |
⊗ | ||||
---|---|---|---|---|
0 | 0 | |||
0 | 0 | |||
0 | 0 | |||
0 | 0 |
⊗ | ||||
---|---|---|---|---|
0 | 0 | |||
0 | 0 | |||
0 | 0 | |||
0 | 0 |
⊗ | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | |||||
0 | 0 | 0 | 0 | |||||
0 | 0 | 0 | 0 | |||||
0 | 0 | 0 | 0 | |||||
0 | 0 | 0 | 0 | |||||
0 | 0 | 0 | 0 | |||||
0 | 0 | 0 | 0 | |||||
0 | 0 | 0 | 0 |
⊗ | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | |||||
0 | 0 | 0 | 0 | |||||
0 | 0 | 0 | 0 | |||||
0 | 0 | 0 | 0 | |||||
0 | 0 | 0 | 0 | |||||
0 | 0 | 0 | 0 | |||||
0 | 0 | 0 | 0 | |||||
0 | 0 | 0 | 0 |
⊗ | ||||||||
---|---|---|---|---|---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Freericks, J.K. Efficient Application of the Factorized Form of the Unitary Coupled-Cluster Ansatz for the Variational Quantum Eigensolver Algorithm by Using Linear Combination of Unitaries. Symmetry 2023, 15, 1429. https://doi.org/10.3390/sym15071429
Xu L, Freericks JK. Efficient Application of the Factorized Form of the Unitary Coupled-Cluster Ansatz for the Variational Quantum Eigensolver Algorithm by Using Linear Combination of Unitaries. Symmetry. 2023; 15(7):1429. https://doi.org/10.3390/sym15071429
Chicago/Turabian StyleXu, Luogen, and James K. Freericks. 2023. "Efficient Application of the Factorized Form of the Unitary Coupled-Cluster Ansatz for the Variational Quantum Eigensolver Algorithm by Using Linear Combination of Unitaries" Symmetry 15, no. 7: 1429. https://doi.org/10.3390/sym15071429
APA StyleXu, L., & Freericks, J. K. (2023). Efficient Application of the Factorized Form of the Unitary Coupled-Cluster Ansatz for the Variational Quantum Eigensolver Algorithm by Using Linear Combination of Unitaries. Symmetry, 15(7), 1429. https://doi.org/10.3390/sym15071429