Applications of Symmetric Identities for Apostol–Bernoulli and Apostol–Euler Functions
Abstract
1. Introduction
2. An Auxiliary Lemma
3. Statement of Main Results
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, Q.-M.; Srivastava, H.M. Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 2005, 308, 290–302. [Google Scholar] [CrossRef]
- Luo, Q.-M.; Srivastava, H.M. Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 2006, 51, 631–642. [Google Scholar] [CrossRef]
- Apostol, T.M. On the Lerch zeta function. Pac. J. Math. 1951, 1, 161–167. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Camb. Philos. Soc. 2000, 129, 77–84. [Google Scholar] [CrossRef]
- Nielsen, N. Traité Élémentaire des Nombres de Bernoulli; Gauthier-Villars: Paris, France, 1923. [Google Scholar]
- Nörlund, N.E. Vorlesungen über Differenzenrechnung; Springer: Berlin/Heidelberg, Germany, 1924. [Google Scholar]
- Belbachir, H.; Djemmada, Y.; Hadj-Brahim, S. Unified Bernoulli-Euler polynomials of Apostol type. Indian J. Pure Appl. Math. 2023, 54, 76–83. [Google Scholar] [CrossRef]
- Raabe, J.L. Zurückführung einiger Summen und bestimmten Integrale auf die Jacob-Bernoullische Function. J. Reine Angew. Math. 1851, 42, 348–367. [Google Scholar]
- Howard, F.T. Applications of a recurrence for the Bernoulli numbers. J. Number Theory 1995, 52, 157–172. [Google Scholar] [CrossRef]
- Tuenter, H.J.H. A symmetry of power sum polynomials and Bernoulli numbers. Am. Math. Monthly 2001, 108, 258–261. [Google Scholar] [CrossRef]
- Yang, S.-L. An identity of symmetry for the Bernoulli polynomials. Discrete Math. 2008, 308, 550–554. [Google Scholar] [CrossRef]
- Kim, T. Symmetry p-adic invariant integral on Zp for Bernoulli and Euler polynomials. J. Differ. Equ. Appl. 2008, 14, 1267–1277. [Google Scholar] [CrossRef]
- Liu, H.; Wang, W. Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums. Discrete Math. 2009, 309, 3346–3363. [Google Scholar] [CrossRef]
- Wang, W.; Wang, W. Some results on power sums and Apostol-type polynomials. Integral Transform. Spec. Funct. 2010, 21, 307–318. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, H. Several identities for the generalized Apostol-Bernoulli polynomials. Comput. Math. Appl. 2008, 56, 2993–2999. [Google Scholar] [CrossRef]
- He, Y. Symmetric identities for Carlitz’s q-Bernoulli numbers and polynomials. Adv. Differ. Equ. 2013, 2013, 246. [Google Scholar] [CrossRef]
- He, Y.; Zhang, W. A note on the twisted Lerch type Euler zeta functions. Bull. Korean Math. Soc. 2013, 50, 659–665. [Google Scholar] [CrossRef]
- Luo, Q.-M. Multiplication formulas for Apostol-type polynomials and multiple alternating sums. Math. Notes 2012, 91, 46–57. [Google Scholar] [CrossRef]
- Kurt, V. Some symmetry identities for the unified Apostol-type polynomials and multiple power sums. Filomat 2016, 30, 583–592. [Google Scholar] [CrossRef]
- Araci, S.; Duran, U.; Acikgoz, M. A study on a class of q-Euler polynomials under the symmetric group of degree n. J. Nonlinear Sci. Appl. 2016, 9, 5196–5201. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kurt, B.; Kurt, V. Identities and relations involving the modified degenerate hermite-based Apostol-Bernoulli and Apostol-Euler polynomials. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2019, 113, 1299–1313. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Kim, H.Y.; Kwon, J. Identities of symmetry for Bernoulli polynomials and power sums. J. Inequal. Appl. 2020, 2020, 245. [Google Scholar] [CrossRef]
- Khan, N.; Usman, T.; Choi, J. A new class of generalized polynomials involving Laguerre and Euler polynomials. Hacet. J. Math. Stat. 2021, 50, 1–13. [Google Scholar] [CrossRef]
- Usman, T.; Khan, N.; Aman, M.; Choi, J. A family of generalized Legendre-based Apostol-type polynomials. Axioms 2022, 11, 29. [Google Scholar] [CrossRef]
- Luo, Q.-M. Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials. Math. Comp. 2009, 78, 2193–2208. [Google Scholar] [CrossRef]
- Bayad, A. Fourier expansions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. Math. Comp. 2011, 80, 2219–2221. [Google Scholar] [CrossRef]
- Bayad, A. Arithmetical properties of elliptic Bernoulli and Euler numbers. Int. J. Algebra 2010, 4, 353–372. [Google Scholar]
- Hermite, C. Sur quelques conséquences arithmétiques des Formules de la théorie des fonctions elliptiques. Acta Math. 1884, 5, 297–330. [Google Scholar] [CrossRef]
- Cetin, E.; Simsek, Y.; Cangul, I.N. Some special finite sums related to the three-term polynomial relations and their applications. Adv. Differ. Equ. 2014, 2014, 283. [Google Scholar] [CrossRef]
- Apostol, T.M. Introduction to Analytic Number Theory; Springer: New York, NY, USA, 1976. [Google Scholar]
- Carlitz, L. Generalized Dedekind sums. Math. Z. 1964, 85, 83–90. [Google Scholar] [CrossRef]
- Bayad, A.; Raouj, A. Reciprocity formulae for multiple Dedekind-Rademacher sums. C. R. Math. Acad. Sci. Paris 2011, 349, 131–136. [Google Scholar] [CrossRef]
- Aursukaree, S.; Khemaratchatakumthorn, T.; Pongsriiam, P. Generalizations of Hermite’s identity and applications. Fibonacci Quart. 2019, 57, 126–133. [Google Scholar]
- Kim, M.-S.; Son, J.-W. On generalized Dedekind sums involving quasi-periodic Euler functions. J. Number Theory 2014, 144, 267–280. [Google Scholar] [CrossRef]
- Hu, S.; Kim, D.; Kim, M.-S. On reciprocity formula of Apostol-Dedekind sum with quasi-periodic Euler functions. J. Number Theory 2016, 162, 54–67. [Google Scholar] [CrossRef]
- Cetin, E. A note on Hardy type sums and Dedekind sums. Filomat 2016, 30, 977–983. [Google Scholar] [CrossRef]
- Berndt, B.C. Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan. J. Reine Angew. Math. 1978, 303/304, 332–365. [Google Scholar]
- Simsek, Y. Relations between theta-functions Hardy sums Eisenstein and Lambert series in the transformation formula of logηg,h(z). J. Number Theory 2003, 99, 338–360. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, W. Generalized Cochrane sums and Cochrane-Hardy sums. J. Number Theory 2007, 122, 415–428. [Google Scholar] [CrossRef]
- Liu, H.; Gao, J. Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums. Czech. Math. J. 2012, 62, 1147–1159. [Google Scholar] [CrossRef]
- Can, M. Reciprocity formulas for Hall-Wilson-Zagier type Hardy-Berndt sums. Acta Math. Hungar. 2021, 163, 118–139. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y. Applications of Symmetric Identities for Apostol–Bernoulli and Apostol–Euler Functions. Symmetry 2023, 15, 1384. https://doi.org/10.3390/sym15071384
He Y. Applications of Symmetric Identities for Apostol–Bernoulli and Apostol–Euler Functions. Symmetry. 2023; 15(7):1384. https://doi.org/10.3390/sym15071384
Chicago/Turabian StyleHe, Yuan. 2023. "Applications of Symmetric Identities for Apostol–Bernoulli and Apostol–Euler Functions" Symmetry 15, no. 7: 1384. https://doi.org/10.3390/sym15071384
APA StyleHe, Y. (2023). Applications of Symmetric Identities for Apostol–Bernoulli and Apostol–Euler Functions. Symmetry, 15(7), 1384. https://doi.org/10.3390/sym15071384