Reaction of Triazolic Aldehydes with Diisopropyl Zinc: Chirality Dissipation versus Amplification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. Chemical Synthesis
2.3. Computational Details
3. Results
3.1. Development of a Strategy for the Screening of Promising Substrates
3.2. Design and Synthesis of the Perspecvtive Substrates
3.3. Reactions of Compounds 1–3 with Diisopropylzinc
- A significant accelerating effect of a catalyst was observed only in the reaction of 2 catalyzed by (R,R)-QuinoxP* (entry 12). For 1 and 3, the highest yields were obtained in the non-catalyzed reactions (entries 1, 18).
- Among the applied chiral catalysts, only ephedrine led to the formation of notably optically enriched products (entries 3–5, 11, 20). Even in these cases, a negative non-linear effect was observed, since the ee of the products was significantly lower than the ee of the catalyst.
- Autocatalysis was not observed: compare entries 1 and 8; 10 and 15, 16; 17, 18 and 23.
- Some of the results of the autocatalytic reactions roughly correspond to preserving the ee of the catalyst diluted by a larger amount of the non-chiral product (entries 9, 23). Other results indicate dissipation of chirality (entries 8, 15, 16).
- Spontaneous chirality generation was observed for substrates 1 and 3 (entries 1, 2, 17, 18).
3.4. Computational Analysis of the Reaction of Aldehyde 3 with Diisopropyl Zinc
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Soai, K.; Shibata, T.; Morioka, H.; Choji, K. Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 1995, 378, 767–768. [Google Scholar] [CrossRef]
- Mislow, K. Absolute asymmetric synthesis: A commentary. Collect. Czech. Chem. Commun. 2003, 68, 849–864. [Google Scholar] [CrossRef]
- Soai, K. Asymmetric Autocatalysis, Absolute Asymmetric Synthesis and Origin of Homochirality of Biomolecules. In Progress in Biological Chirality; Palyi, G., Zucchi, C., Caglioti, L., Eds.; Elsevier: London, UK, 2004; Volume 1, pp. 355–364. [Google Scholar]
- Brown, J.M. Reaction Mechanism in the Study of Amplifying Asymmetric Autocatalysis. In Asymmetric Autocatalysis: The Soai Reaction; Soai, K., Kawasaki, T., Matsumoto, A., Eds.; Royal Society of Chemistry: Cambridge, UK, 2022; Volume 43, pp. 97–128. [Google Scholar]
- Soai, K.; Sato, I.; Shibata, T.; Komiya, S.; Hayashi, M.; Matsueda, Y.; Imamura, H.; Hayase, T.; Morioka, H.; Tabira, H.; et al. Asymmetric synthesis of pyrimidyl alkanol without adding chiral substances by the addition of diisopropylzinc to pyrimidine-5-carbaldehyde in conjunction with asymmetric autocatalysis. Tetrahedron Asymmetry 2003, 14, 185–188. [Google Scholar] [CrossRef]
- Gridnev, I.D.; Serafimov, J.M.; Quiney, H.; Brown, J.M. Reflections on spontaneous asymmetric synthesis by amplifying autocatalysis. Org. Biomol. Chem. 2003, 1, 3811–3819. [Google Scholar] [CrossRef]
- Singleton, D.A.; Vo, L.K. A Few Molecules Can Control the Enantiomeric Outcome. Evidence Supporting Absolute Asymmetric Synthesis Using the Soai Asymmetric Autocatalysis. Org. Lett. 2003, 23, 4337–4339. [Google Scholar] [CrossRef] [PubMed]
- Soai, K.; Shibata, T.; Sato, I. Discovery and Development of Asymmetric Autocatalysis. Bull. Chem. Soc. Jpn. 2004, 77, 1063–1073. [Google Scholar] [CrossRef]
- Gridnev, I.D.; Vorob’ev, A.K. Quantification of Sophisticated Equilibria in the Reaction Pool and Amplifying Catalytic Cycle of the Soai Reaction. ACS Catal. 2012, 2, 2137–2149. [Google Scholar] [CrossRef]
- Athavale, S.V.; Simon, A.; Houk, K.N.; Denmark, S.E. Structural Contributions to Autocatalysis and Asymmetric Amplification in the Soai Reaction. J. Am. Chem. Soc. 2020, 142, 18387–18406. [Google Scholar] [CrossRef]
- Girard, C.; Kagan, H.B. Nonlinear Effects in Asymmetric Synthesis and Stereoselective Reactions: Ten Years of Investigation. Angew. Chem. Int. Ed. 1998, 37, 2922–2959. [Google Scholar] [CrossRef]
- Song, H.; Rogers, N.J.; Brabec, V.; Clarkson, G.J.; Coverdale, J.P.C.; Kostrhunova, H.; Phillips, R.M.; Postings, M.; Shepherd, S.L.; Scott, P. Triazole-based, optically-pure metallosupramolecules; highly potent and selective anticancer compounds. Chem. Commun. 2020, 56, 6392–6395. [Google Scholar] [CrossRef]
- Dai, Z.C.; Chen, Y.F.; Zhang, M.; Li, S.K.; Yang, T.-T.; Shen, L.; Wang, J.X.; Qian, S.S.; Zhu, H.L.; Ye, Y.H. Synthesis and antifungal activity of 1,2,3-triazole phenylhydrazone derivatives. Org. Biomol. Chem. 2015, 13, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Rev. D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Hariharan, P.C.; Pople, J.A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Francl, M.M.; Pietro, W.J.; Hehre, W.J.; Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.; Pople, J.A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982, 77, 3654–3665. [Google Scholar]
- Gordon, M.S.; Binkley, J.S.; Pople, J.A.; Pietro, W.J.; Hehre, W.J. Self-consistent molecular-orbital methods. Small split-valence basis sets for second-row elements. J. Am. Chem. Soc. 1982, 104, 2797–2803. [Google Scholar] [CrossRef]
- Rassolov, V.A.; Pople, J.A.; Ratner, M.A.; Windus, T.L. 6-31G * basis set for atoms K through Zn. J. Chem. Phys. 1998, 109, 1223–1229. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg. Chem. 2017, 71, 30–54. [Google Scholar] [CrossRef]
- Schulze, B.; Schubert, U.S. Beyond click chemistry–Supramolecular interactions of 1,2,3-triazoles. Chem. Soc. Rev. 2014, 43, 2522–2571. [Google Scholar] [CrossRef]
- Liang, L.; Astruc, D. The copper (I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview. Coord. Chem. Rev. 2011, 255, 2933–2945. [Google Scholar] [CrossRef]
- Ngo, J.T.; Adams, S.R.; Deerinck, T.J.; Boassa, D.; Rodriguez-Rivera, F.; Palida, S.F.; Bertozzi, C.R.; Ellisman, M.H.; Tsien, R.Y. Click-EM for imaging metabolically tagged nonprotein biomolecules. Nat. Chem. Biol. 2016, 12, 459–465. [Google Scholar] [CrossRef] [Green Version]
- Astruc, D.; Liang, L.; Rapakousiou, A.; Ruiz, J. Click dendrimers and triazole-related aspects: Catalysts, mechanism, synthesis, and functions. A bridge between dendritic architectures and nanomaterials. Acc. Chem. Res. 2012, 45, 630–640. [Google Scholar] [CrossRef]
- Wang, X.; Huang, B.; Liu, X.; Zhan, P. Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries. Drug Discov. Today 2016, 21, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem. 2019, 27, 3511–3531. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, Z.; Gao, C.; Ren, Q.C.; Chang, L.; Lv, Z.S.; Feng, L.S. Triazole derivatives and their anti-tubercular activity. Eur. J. Med. Chem. 2017, 138, 501–513. [Google Scholar] [CrossRef]
- Bangalore, P.K.; Vagolu, S.K.; Bollikanda, R.K.; Veeragoni, D.K.; Choudante, P.C.; Misra, S.; Sriram, D.; Sridhar, B.; Kantevari, S. Usnic Acid Enaminone-Coupled 1,2,3-Triazoles as antibacterial and antitubercular Agents. J. Nat. Prod. 2019, 83, 26–35. [Google Scholar] [CrossRef]
- Manohar, S.; Khan, S.I.; Rawat, D.S. Synthesis of 4-aminoquinoline-1,2,3-triazole and 4-aminoquinoline-1,2,3-triazole-1,3,5-triazine hybrids as potential antimalarial agents. Chem. Biol. Drug Des. 2011, 78, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Pribut, N.; Veale, C.G.L.; Basson, A.E.; van Otterlo, W.A.L.; Pelly, S.C. Application of the Huisgen cycloaddition and ‘click’ reaction toward various 1, 2, 3-triazoles as HIV non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett. 2016, 26, 3700–3704. [Google Scholar] [CrossRef] [PubMed]
- Narsimha, S.; Nukala, S.K.; Jyostna, T.S.; Ravinder, M.; Rao, M.S.; Reddy, N.V. One-pot synthesis and biological evaluation of novel 4-[3-fluoro-4-(morpholin-4-yl)] phenyl-1H-1,2,3-triazole derivatives as potent antibacterial and anticancer agents. J. Heterocycl. Chem. 2020, 57, 1655–1665. [Google Scholar] [CrossRef]
- Buckle, D.R.; Outred, D.J.; Rockell, C.J.M.; Smith, H.; Spicer, B.A. Studies on v-triazoles. 7. Antiallergic 9-oxo-1H,9H benzopyrano[2, 3-d]-v-triazoles. J. Med. Chem. 1983, 26, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Kant, R.; Kumar, D.; Agarwal, D.; Gupta, R.D.; Tilak, R.; Awasthi, S.K.; Agarwal, A. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur. J. Med. Chem. 2016, 113, 34–49. [Google Scholar] [CrossRef] [PubMed]
- Gridnev, I.D.; Serafimov, J.M.; Brown, J.M. Solution Structure and Reagent Binding of the Zinc Alkoxide Catalyst in the Soai Asymmetric Autocatalytic Reaction. Angew. Chem. Int. Ed. 2004, 43, 4884–4887. [Google Scholar] [CrossRef]
Entry | Compound Number | Cat | Ratio Ald:Zn(i-Pr)2:Cat | Conditions | Yield, % | ee, % |
---|---|---|---|---|---|---|
1 | R = Bn (1) | none | 1:10 | r.t., 4 h | 43 | 3 |
2 | 1:10 | reflux 0.1 h (NMR tube) | 25 | 41 | ||
3 | Ephedrine | 1:10:0.2 | 80 °C, 6 h | 20 | 35 | |
4 | 1:10:0.1 | 80 °C, 4 h | 33 | 37 | ||
5 | 1:10:0.1 | reflux, 0.1 h (NMR tube) | 29 | 10 | ||
6 | (R,R)-QiunoxP * | 1:10:0.1 | 80 °C, 4 h | 25 | 2 | |
7 | (R,R)-BenzP * | 1:10:0.1 | 80 °C, 4 h | 30 | 20 | |
8 | 1, 20% ee | 1:10:0.2 | r.t., overnight | 11 | 0 | |
9 | 1, 37% ee | 1:10:0.2 | 80 °C, 4 h | 30 | 25 | |
10 | R = Ph (2) | none | 1:10 | r.t., 4 h | 48 | 0 |
11 | Ephedrine | 1:10:0.1 | r.t., 1 h | 40 | 27 | |
12 | (R,R)-QiunoxP * | 1:10:0.1 | r.t., 1 h | 75 | 2 | |
13 | (R,R)-BenzP * | 1:10:0.1 | r.t., overnight | 24 | 13 | |
14 | (–)Sparteine | 1:10:0.1 | r.t., 4 h | 13 | 3 | |
15 | 2, 13% ee | 1:10:0.2 | r.t., 3 h | 48 | 0 | |
16 | 2, 27% ee | 1:10:0.2 | r.t., overnight | 47 | 0 | |
17 | R = p-ClC6H4 (3) | none | 1:10 | r.t., 4 h | 37 | 10 |
18 | 1:10 | r.t., overnight | 52 | 11 | ||
19 | 1:10 | reflux, 0.1 h (NMR tube) | 21 | 0 | ||
20 | Ephedrine | 1:20:0.1 | r.t., overnight | 31 | 33 | |
21 | (R,R)-QiunoxP * | 1:10:0.1 | reflux, 0.1 h (NMR tube) | 25 | 15 | |
22 | (R,R)-BenzP * | 1:10:0.1 | reflux, 0.1 h (NMR tube) | 20 | 9 | |
23 | 3, 33% ee | 1:10:0.2 | r.t., overnight | 53 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhaylov, O.A.; Saigitbatalova, E.S.; Latypova, L.Z.; Kurbangalieva, A.R.; Gridnev, I.D. Reaction of Triazolic Aldehydes with Diisopropyl Zinc: Chirality Dissipation versus Amplification. Symmetry 2023, 15, 1382. https://doi.org/10.3390/sym15071382
Mikhaylov OA, Saigitbatalova ES, Latypova LZ, Kurbangalieva AR, Gridnev ID. Reaction of Triazolic Aldehydes with Diisopropyl Zinc: Chirality Dissipation versus Amplification. Symmetry. 2023; 15(7):1382. https://doi.org/10.3390/sym15071382
Chicago/Turabian StyleMikhaylov, Oleg A., Elena Sh. Saigitbatalova, Liliya Z. Latypova, Almira R. Kurbangalieva, and Ilya D. Gridnev. 2023. "Reaction of Triazolic Aldehydes with Diisopropyl Zinc: Chirality Dissipation versus Amplification" Symmetry 15, no. 7: 1382. https://doi.org/10.3390/sym15071382
APA StyleMikhaylov, O. A., Saigitbatalova, E. S., Latypova, L. Z., Kurbangalieva, A. R., & Gridnev, I. D. (2023). Reaction of Triazolic Aldehydes with Diisopropyl Zinc: Chirality Dissipation versus Amplification. Symmetry, 15(7), 1382. https://doi.org/10.3390/sym15071382