The p-Numerical Semigroup of the Triple of Arithmetic Progressions
Abstract
1. Introduction
2. Preliminaries
3. The Main Result
4. Power Sums
5. Weighted Sums
6. Examples
7. Final Comments
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Komatsu, T.; Ying, H. p-numerical semigroups with p-symmetric properties. J. Algebra Appl. 2024, 23. (Online Ready). [Google Scholar] [CrossRef]
- Sylvester, J.J. Mathematical questions with their solutions. Educ. Times 1884, 41, 21. [Google Scholar]
- Sylvester, J.J. On subinvariants, i.e., semi-invariants to binary quantics of an unlimited order. Am. J. Math. 1882, 5, 119–136. [Google Scholar] [CrossRef]
- Brown, T.C.; Shiue, P.J. A remark related to the Frobenius problem. Fibonacci Quart. 1993, 31, 32–36. [Google Scholar]
- Rødseth, Ø.J. A note on Brown and Shiue’s paper on a remark related to the Frobenius problem. Fibonacci Quart. 1994, 32, 407–408. [Google Scholar]
- Robles-Pérez, A.M.; Rosales, J.C. The Frobenius number for sequences of triangular and tetrahedral numbers. J. Number Theory 2018, 186, 473–492. [Google Scholar] [CrossRef]
- Herzog, J. Generators and relations of abelian semigroups and semigroup rings. Manuscripta Math. 1970, 3, 175–193. [Google Scholar] [CrossRef]
- Tripathi, A. Formulae for the Frobenius number in three variables. J. Number Theory 2017, 170, 368–389. [Google Scholar] [CrossRef]
- Komatsu, T. The Frobenius number for sequences of triangular numbers associated with number of solutions. Ann. Comb. 2022, 26, 757–779. [Google Scholar] [CrossRef]
- Komatsu, T. The Frobenius number associated with the number of representations for sequences of repunits. C. R. Math. Acad. Sci. Paris 2023, 361, 73–89. [Google Scholar] [CrossRef]
- Komatsu, T.; Ying, H. The p-Frobenius and p-Sylvester numbers for Fibonacci and Lucas triplets. Math. Biosci. Eng. 2023, 20, 3455–3481. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, T.; Pita-Ruiz, C. The Frobenius number for Jacobsthal triples associated with number of solutions. Axioms 2023, 12, 98. [Google Scholar] [CrossRef]
- Komatsu, T.; Laishram, S.; Punyani, P. p-numerical semigroups of generalized Fibonacci triples. Symmetry 2023, 15, 852. [Google Scholar] [CrossRef]
- Binner, D.S. Proofs of Chappelon and Ramirez Alfonsin conjectures on square Frobenius numbers and their relationship to simultaneous Pell equations. Integers 2023, 23, A12. [Google Scholar]
- Bokaew, R.; Yuttanan, B.; Mavecha, S. Formulae of the Frobenius number in relatively prime three Lucas numbers. Songklanakarin J. Sci. Technol. 2020, 42, 1077–1083. [Google Scholar]
- Branco, M.B.; Manuel, B.; Colaco, I.; Ojeda, I. The Frobenius problem for generalized repunit numerical semigroups. Mediterr. J. Math. 2023, 20, 18. [Google Scholar] [CrossRef]
- Hashuga, M.; Herbine, M.; Jensen, A. Numerical semigroups generated by quadratic sequences. Semigroup Forum 2022, 104, 330–357. [Google Scholar] [CrossRef]
- Liu, F.; Xin, G. On Frobenius formulas of power sequences. arXiv 2023, arXiv:2210.02722. [Google Scholar]
- Liu, F.; Xin, G. A combinatorial approach to Frobenius numbers of some special sequences (Complete version). arXiv 2023, arXiv:2303.07149. [Google Scholar]
- Liu, F.; Xin, G.; Ye, S.; Yin, J. The Frobenius formula for A = {a, ha + d, ha + b2d, ⋯, ha + bkd}. arXiv 2023, arXiv:2304.09039. [Google Scholar]
- Liu, F.; Xin, G.; Ye, S.; Yin, J. A generalization of Mersenne and Thabit numerical semigroups. arXiv 2023, arXiv:2306.03459. [Google Scholar]
- Liu, F.; Xin, G.; Ye, S.; Yin, J. A Note on generalized repunit numerical semigroups. arXiv 2023, arXiv:2306.10738. [Google Scholar]
- Robles-Pérez, A.M.; Rosales, J.C. A Frobenius problem suggested by prime k-tuplets. Discret. Math. 2023, 346, 113394. [Google Scholar] [CrossRef]
- Rosales, J.C.; Branco, M.B.; Traesel, M.A. Numerical semigroups without consecutive small elements. Int. Algebra Comput. 2023, 33, 67–85. [Google Scholar] [CrossRef]
- Shallit, J. Frobenius numbers and automatic sequences. Integers 2021, 21, A124. [Google Scholar]
- Çağman, A. Repdigits as product of Fibonacci and Pell numbers. Turkish J. Sci. 2021, 6, 31–35. [Google Scholar]
- Erdağ, Ö.; Devece, Ö.; Karaduman, E. The complex-type cyclic-Pell sequence and its applications. Turkish J. Sci. 2022, 7, 202–210. [Google Scholar]
- Apéry, R. Sur les branches superlinéaires des courbes algébriques. C. R. Acad. Sci. Paris 1946, 222, 1198–1200. [Google Scholar]
- Komatsu, T. On p-Frobenius and related numbers due to p-Apéry set. arXiv 2022, arXiv:2111.11021. [Google Scholar]
- Komatsu, T. Sylvester power and weighted sums on the Frobenius set in arithmetic progression. Discrete Appl. Math. 2022, 315, 110–126. [Google Scholar] [CrossRef]
- Brauer, A.; Shockley, B.M. On a problem of Frobenius. J. Reine Angew. Math. 1962, 211, 215–220. [Google Scholar]
- Selmer, E.S. On the linear diophantine problem of Frobenius. J. Reine Angew. Math. 1977, 293–294, 1–17. [Google Scholar]
- Tripathi, A. On sums of positive integers that are not of the form ax + by. Am. Math. Mon. 2008, 115, 363–364. [Google Scholar] [CrossRef]
- Komatsu, T.; Zhang, Y. Weighted Sylvester sums on the Frobenius set. Irish Math. Soc. Bull. 2021, 87, 21–29. [Google Scholar] [CrossRef]
- Komatsu, T.; Zhang, Y. Weighted Sylvester sums on the Frobenius set in more variables. Kyushu J. Math. 2022, 76, 163–175. [Google Scholar] [CrossRef]
- Roberts, J.B. Notes on linear forms. Proc. Am. Math. Soc. 1956, 7, 465–469. [Google Scholar] [CrossRef]
- Brauer, A. On a problem of partitions. Amer. J. Math. 1942, 64, 299–312. [Google Scholar] [CrossRef]
- Komatsu, T. Sylvester sums on the Frobenius set in arithmetic progression. In Mathematical Methods for Engineering Applications; Yilmaz, F., Queiruga-Dios, A., Santos Sánches, M.J., Rasteiro, D., Gayoso Martínez, V., Vaquero, J.M., Eds.; Springer Proceedings in Mathematics & Statistics; Springer: Cham, Switzerland, 2022; Volume 384, pp. 1–23. [Google Scholar] [CrossRef]
⋮ | ⋮ |
⋮ | ⋮ | ⋮ | ⋮ |
⋮ | ⋮ | ⋮ | ⋮ | ||
⋮ | ⋮ | ||||
⋯ | ⋯ | |||||||
⋮ | ⋮ | ⋮ | ⋮ | |||||
⋮ | ⋮ | ⋮ | ⋮ | |||||
⋮ | ||||||||
⋮ | ||||||||
⋮ | ⋮ |
⋯ | ⋯ | ||||||||||
⋮ | ⋮ | ⋮ | |||||||||
⋮ | |||||||||||
⋮ | |||||||||||
⋮ | |||||||||||
⋮ | |||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komatsu, T.; Ying, H. The p-Numerical Semigroup of the Triple of Arithmetic Progressions. Symmetry 2023, 15, 1328. https://doi.org/10.3390/sym15071328
Komatsu T, Ying H. The p-Numerical Semigroup of the Triple of Arithmetic Progressions. Symmetry. 2023; 15(7):1328. https://doi.org/10.3390/sym15071328
Chicago/Turabian StyleKomatsu, Takao, and Haotian Ying. 2023. "The p-Numerical Semigroup of the Triple of Arithmetic Progressions" Symmetry 15, no. 7: 1328. https://doi.org/10.3390/sym15071328
APA StyleKomatsu, T., & Ying, H. (2023). The p-Numerical Semigroup of the Triple of Arithmetic Progressions. Symmetry, 15(7), 1328. https://doi.org/10.3390/sym15071328