The p-Numerical Semigroup of the Triple of Arithmetic Progressions
Abstract
:1. Introduction
2. Preliminaries
3. The Main Result
4. Power Sums
5. Weighted Sums
6. Examples
7. Final Comments
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Komatsu, T.; Ying, H. p-numerical semigroups with p-symmetric properties. J. Algebra Appl. 2024, 23. (Online Ready). [Google Scholar] [CrossRef]
- Sylvester, J.J. Mathematical questions with their solutions. Educ. Times 1884, 41, 21. [Google Scholar]
- Sylvester, J.J. On subinvariants, i.e., semi-invariants to binary quantics of an unlimited order. Am. J. Math. 1882, 5, 119–136. [Google Scholar] [CrossRef]
- Brown, T.C.; Shiue, P.J. A remark related to the Frobenius problem. Fibonacci Quart. 1993, 31, 32–36. [Google Scholar]
- Rødseth, Ø.J. A note on Brown and Shiue’s paper on a remark related to the Frobenius problem. Fibonacci Quart. 1994, 32, 407–408. [Google Scholar]
- Robles-Pérez, A.M.; Rosales, J.C. The Frobenius number for sequences of triangular and tetrahedral numbers. J. Number Theory 2018, 186, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Herzog, J. Generators and relations of abelian semigroups and semigroup rings. Manuscripta Math. 1970, 3, 175–193. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A. Formulae for the Frobenius number in three variables. J. Number Theory 2017, 170, 368–389. [Google Scholar] [CrossRef]
- Komatsu, T. The Frobenius number for sequences of triangular numbers associated with number of solutions. Ann. Comb. 2022, 26, 757–779. [Google Scholar] [CrossRef]
- Komatsu, T. The Frobenius number associated with the number of representations for sequences of repunits. C. R. Math. Acad. Sci. Paris 2023, 361, 73–89. [Google Scholar] [CrossRef]
- Komatsu, T.; Ying, H. The p-Frobenius and p-Sylvester numbers for Fibonacci and Lucas triplets. Math. Biosci. Eng. 2023, 20, 3455–3481. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, T.; Pita-Ruiz, C. The Frobenius number for Jacobsthal triples associated with number of solutions. Axioms 2023, 12, 98. [Google Scholar] [CrossRef]
- Komatsu, T.; Laishram, S.; Punyani, P. p-numerical semigroups of generalized Fibonacci triples. Symmetry 2023, 15, 852. [Google Scholar] [CrossRef]
- Binner, D.S. Proofs of Chappelon and Ramirez Alfonsin conjectures on square Frobenius numbers and their relationship to simultaneous Pell equations. Integers 2023, 23, A12. [Google Scholar]
- Bokaew, R.; Yuttanan, B.; Mavecha, S. Formulae of the Frobenius number in relatively prime three Lucas numbers. Songklanakarin J. Sci. Technol. 2020, 42, 1077–1083. [Google Scholar]
- Branco, M.B.; Manuel, B.; Colaco, I.; Ojeda, I. The Frobenius problem for generalized repunit numerical semigroups. Mediterr. J. Math. 2023, 20, 18. [Google Scholar] [CrossRef]
- Hashuga, M.; Herbine, M.; Jensen, A. Numerical semigroups generated by quadratic sequences. Semigroup Forum 2022, 104, 330–357. [Google Scholar] [CrossRef]
- Liu, F.; Xin, G. On Frobenius formulas of power sequences. arXiv 2023, arXiv:2210.02722. [Google Scholar]
- Liu, F.; Xin, G. A combinatorial approach to Frobenius numbers of some special sequences (Complete version). arXiv 2023, arXiv:2303.07149. [Google Scholar]
- Liu, F.; Xin, G.; Ye, S.; Yin, J. The Frobenius formula for A = {a, ha + d, ha + b2d, ⋯, ha + bkd}. arXiv 2023, arXiv:2304.09039. [Google Scholar]
- Liu, F.; Xin, G.; Ye, S.; Yin, J. A generalization of Mersenne and Thabit numerical semigroups. arXiv 2023, arXiv:2306.03459. [Google Scholar]
- Liu, F.; Xin, G.; Ye, S.; Yin, J. A Note on generalized repunit numerical semigroups. arXiv 2023, arXiv:2306.10738. [Google Scholar]
- Robles-Pérez, A.M.; Rosales, J.C. A Frobenius problem suggested by prime k-tuplets. Discret. Math. 2023, 346, 113394. [Google Scholar] [CrossRef]
- Rosales, J.C.; Branco, M.B.; Traesel, M.A. Numerical semigroups without consecutive small elements. Int. Algebra Comput. 2023, 33, 67–85. [Google Scholar] [CrossRef]
- Shallit, J. Frobenius numbers and automatic sequences. Integers 2021, 21, A124. [Google Scholar]
- Çağman, A. Repdigits as product of Fibonacci and Pell numbers. Turkish J. Sci. 2021, 6, 31–35. [Google Scholar]
- Erdağ, Ö.; Devece, Ö.; Karaduman, E. The complex-type cyclic-Pell sequence and its applications. Turkish J. Sci. 2022, 7, 202–210. [Google Scholar]
- Apéry, R. Sur les branches superlinéaires des courbes algébriques. C. R. Acad. Sci. Paris 1946, 222, 1198–1200. [Google Scholar]
- Komatsu, T. On p-Frobenius and related numbers due to p-Apéry set. arXiv 2022, arXiv:2111.11021. [Google Scholar]
- Komatsu, T. Sylvester power and weighted sums on the Frobenius set in arithmetic progression. Discrete Appl. Math. 2022, 315, 110–126. [Google Scholar] [CrossRef]
- Brauer, A.; Shockley, B.M. On a problem of Frobenius. J. Reine Angew. Math. 1962, 211, 215–220. [Google Scholar]
- Selmer, E.S. On the linear diophantine problem of Frobenius. J. Reine Angew. Math. 1977, 293–294, 1–17. [Google Scholar]
- Tripathi, A. On sums of positive integers that are not of the form ax + by. Am. Math. Mon. 2008, 115, 363–364. [Google Scholar] [CrossRef]
- Komatsu, T.; Zhang, Y. Weighted Sylvester sums on the Frobenius set. Irish Math. Soc. Bull. 2021, 87, 21–29. [Google Scholar] [CrossRef]
- Komatsu, T.; Zhang, Y. Weighted Sylvester sums on the Frobenius set in more variables. Kyushu J. Math. 2022, 76, 163–175. [Google Scholar] [CrossRef]
- Roberts, J.B. Notes on linear forms. Proc. Am. Math. Soc. 1956, 7, 465–469. [Google Scholar] [CrossRef]
- Brauer, A. On a problem of partitions. Amer. J. Math. 1942, 64, 299–312. [Google Scholar] [CrossRef]
- Komatsu, T. Sylvester sums on the Frobenius set in arithmetic progression. In Mathematical Methods for Engineering Applications; Yilmaz, F., Queiruga-Dios, A., Santos Sánches, M.J., Rasteiro, D., Gayoso Martínez, V., Vaquero, J.M., Eds.; Springer Proceedings in Mathematics & Statistics; Springer: Cham, Switzerland, 2022; Volume 384, pp. 1–23. [Google Scholar] [CrossRef]
⋮ | ⋮ |
⋮ | ⋮ | ⋮ | ⋮ |
⋮ | ⋮ | ⋮ | ⋮ | ||
⋮ | ⋮ | ||||
⋯ | ⋯ | |||||||
⋮ | ⋮ | ⋮ | ⋮ | |||||
⋮ | ⋮ | ⋮ | ⋮ | |||||
⋮ | ||||||||
⋮ | ||||||||
⋮ | ⋮ |
⋯ | ⋯ | ||||||||||
⋮ | ⋮ | ⋮ | |||||||||
⋮ | |||||||||||
⋮ | |||||||||||
⋮ | |||||||||||
⋮ | |||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komatsu, T.; Ying, H. The p-Numerical Semigroup of the Triple of Arithmetic Progressions. Symmetry 2023, 15, 1328. https://doi.org/10.3390/sym15071328
Komatsu T, Ying H. The p-Numerical Semigroup of the Triple of Arithmetic Progressions. Symmetry. 2023; 15(7):1328. https://doi.org/10.3390/sym15071328
Chicago/Turabian StyleKomatsu, Takao, and Haotian Ying. 2023. "The p-Numerical Semigroup of the Triple of Arithmetic Progressions" Symmetry 15, no. 7: 1328. https://doi.org/10.3390/sym15071328
APA StyleKomatsu, T., & Ying, H. (2023). The p-Numerical Semigroup of the Triple of Arithmetic Progressions. Symmetry, 15(7), 1328. https://doi.org/10.3390/sym15071328