Certain Class of Bi-Univalent Functions Defined by Sălăgean q-Difference Operator Related with Involution Numbers
Abstract
:1. Introduction and Preliminaries
1.1. Quantum Calculus
1.2. Generalized Telephone Numbers (GTNs)
1.3. Bi-Univalent Functions
2. Coefficient Bounds for
3. The Fekete–Szegö Problem for
4. Bi-Univalent Function Class
- 1.
- for let , denotes the subclass of Σ, and the conditions
- 2.
- For let denote the subclass of Σ and satisfy the conditions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, D.; Minda, W.C. A unified treatment of some special classes of functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; International Press Inc.: Cambridge, MA, USA, 1994; pp. 157–169. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer: New York, NY, USA, 2013. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic function related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Sălăgean, G.S. Subclasses of univalent functions, Complex Analysis. In Proceedings of the Fifth Romanian Finish Seminar, Bucharest, Romania, 28 June–3 July 1983; pp. 362–372. [Google Scholar]
- Chowla, S.; Herstein, I.N.; Moore, W.K. On recursions connected with symmetric groups I. Can. J. Math. 1951, 3, 328–334. [Google Scholar] [CrossRef]
- Knuth, D.E. The Art of Computer Programming; Addison-Wesley: Boston, MA, USA, 1973; Volume 3. [Google Scholar]
- Beissinger, J.S. Similar Constructions for Young Tableaux and Involutions, and Their Applications to Shiftable Tableaux. Discrete Math. 1987, 67, 149–163. [Google Scholar] [CrossRef] [Green Version]
- Riordan, J. Introduction to Combinatorial Analysis; Princeton University Press: Dover, UK, 2002. [Google Scholar]
- Włoch, A.; Wołowiec-Musiał, M. On generalized telephone number, their interpretations and matrix generators. Util. Math. 2017, 10, 531–539. [Google Scholar]
- Bednarz, U.; Wolowiec-Musial, M. On a new generalization of telephone numbers. Turk. J. Math. 2019, 43, 1595–1603. [Google Scholar] [CrossRef] [Green Version]
- Deniz, E. Sharp coefficient bounds for starlike functions associated with generalized telephone numbers. Bull. Malays. Math. Sci. Soc. 2020, 44, 1525–1542. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Vijaya, K. Certain subclasses of snalytic functions associated with generalized telephone numbers. Symmetry 2022, 14, 1053. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften Series; Springer: New York, NY, USA, 1983. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Brannan, D.A.; Clunie, J.; Kirwan, W.E. Coefficient estimates for a class of star-like functions. Can. J. Math. 1970, 22, 476–485. [Google Scholar] [CrossRef]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Stud. Univ. Babeş-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Totoi, A.; Cotîrlă, L.I. Preserving Classes of Meromorphic Functions through Integral Operators. Symmetry 2022, 14, 1545. [Google Scholar] [CrossRef]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Shaba, T.G.; Murugusundaramoorthy, G.; Wanas, A.K.; Oros, G.I. The Fekete-Szego functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operator. AIMS Math. 2022, 8, 340–360. [Google Scholar] [CrossRef]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
- Kazımoğlu, S.; Deniz, E.; Cotîrlă, L.I. Geometric Properties of Generalized Integral Operators Related to The Miller–Ross Function. Axioms 2023, 12, 563. [Google Scholar] [CrossRef]
- Sakar, F.M.; Aydogan, S.M. Initial bounds forcertain subclasses of generalized Sălăgean type bi-univalent functions associated with the Horadam Polynomials. J. Qual. Meas. Anal. 2019, 15, 89–100. [Google Scholar]
- Sakar, F.M.; Canbulat, A. Inequalities on coefficients for certain classes of m-fold symmetric and bi-univalent functions equipped with Faber polynomial. Turk. J. Math. 2019, 43, 293–300. [Google Scholar] [CrossRef]
- Çağlar, M.; Deniz, E. Initial coefficients for a subclass of bi-univalent functions defined by Sălăgean differential operator. Commun. Facsi. Univ. Ank. Ser. A 1 Math. Stat. 2017, 66, 85–91. [Google Scholar]
- Çağlar, M. Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions. Comptes Rendus L’acad. Bulg. Sci. 2019, 72, 1608–1615. [Google Scholar]
- Srivastava, H.M.; Wanas, A.K.; Murugusundaramoorthy, G. A certain family of bi-univalent functions associated with the Pascal distribution series based upon the Horadam polynomials. Surv. Math. Appl. 2021, 16, 193–205. [Google Scholar]
- Zaprawa, P. Estimates of initial coefficients for Biunivalent functions. Abstr. Appl. Anal. 2014, 36, 357480. [Google Scholar]
- Srivastava, H.M.; Murugusundaramoorty, G.; El-Deeb, S.M. Faber polynomial coefficient estimates of bi-close-to-convex functions connected with Borel distribution of the Mittag-Leffler-type. J. Nonlinear Var. Anal. 2021, 5, 103–118. [Google Scholar]
- Vijaya, K.; Kasthuri, M.; Murugusundaramoorthy, G. Coefficient bounds for subclasses of bi-univalent functions defined by the Sălăgean derivative operator. Bol. Asoc. Mat. Venez. 2014, 21, 2. [Google Scholar]
- Vijaya, K.; Murugusundaramoorthy, G. Bi-Starlike functionof complex order involving Mathieu-type series associated with telephone numbers. Symmetry 2023, 15, 638. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine Bemerkung über ungerade schlichte Functionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Zaprawa, P. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 169–178. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Motamednezhad, A.; Salehian, S. Coefficients of a comprehensive subclass of meromorphic bi univalent functions associated with the Faber polynomial expansion. Axioms 2021, 10, 27. [Google Scholar] [CrossRef]
- Cotîrlă, L.I.; Wanas, A.K. Applications of Laguerre polynomials for Bazilevic and θ-Pseudo-Starlike bi univalent functionsassociated with Sakaguchi-type functions. Symmetry 2023, 15, 406. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Murugusundaramoorty, G.; Bulboacă, T. The second Hankel determinant for subclasses of Bi-univalent functions associated with a nephroid domain. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 2022, 116, 145. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breaz, D.; Murugusundaramoorthy, G.; Vijaya, K.; Cotîrlǎ, L.-I. Certain Class of Bi-Univalent Functions Defined by Sălăgean q-Difference Operator Related with Involution Numbers. Symmetry 2023, 15, 1302. https://doi.org/10.3390/sym15071302
Breaz D, Murugusundaramoorthy G, Vijaya K, Cotîrlǎ L-I. Certain Class of Bi-Univalent Functions Defined by Sălăgean q-Difference Operator Related with Involution Numbers. Symmetry. 2023; 15(7):1302. https://doi.org/10.3390/sym15071302
Chicago/Turabian StyleBreaz, Daniel, Gangadharan Murugusundaramoorthy, Kaliappan Vijaya, and Luminiţa-Ioana Cotîrlǎ. 2023. "Certain Class of Bi-Univalent Functions Defined by Sălăgean q-Difference Operator Related with Involution Numbers" Symmetry 15, no. 7: 1302. https://doi.org/10.3390/sym15071302
APA StyleBreaz, D., Murugusundaramoorthy, G., Vijaya, K., & Cotîrlǎ, L.-I. (2023). Certain Class of Bi-Univalent Functions Defined by Sălăgean q-Difference Operator Related with Involution Numbers. Symmetry, 15(7), 1302. https://doi.org/10.3390/sym15071302