

Article



# Certain Class of Bi-Univalent Functions Defined by Sălăgean *q*-Difference Operator Related with Involution Numbers

Daniel Breaz <sup>1,†</sup><sup>(D)</sup>, Gangadharan Murugusundaramoorthy <sup>2,†</sup><sup>(D)</sup>, Kaliappan Vijaya <sup>2,†</sup><sup>(D)</sup> and Luminița-Ioana Cotîrlă <sup>3,\*,†</sup><sup>(D)</sup>

- <sup>1</sup> Department of Mathematics, "1 Decembrie 1918" University of Alba Iulia, 510009 Alba Iulia, Romania
- <sup>2</sup> Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamilnadu, India
- <sup>3</sup> Department of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
- \* Correspondence: luminita.cotirla@math.utcluj.ro
- + These authors contributed equally to this work.

**Abstract:** We introduce and examine two new subclass of bi-univalent function  $\Sigma$ , defined in the open unit disk, based on Sălăgean-type *q*-difference operators which are subordinate to the involution numbers. We find initial estimates of the Taylor–Maclaurin coefficients  $|a_2|$  and  $|a_3|$  for functions in the new subclass introduced here. We also obtain a Fekete–Szegö inequality for the new function class. Several new consequences of our results are pointed out, which are new and not yet discussed in association with involution numbers.

**Keywords:** univalent functions; starlike and convex functions; bi-univalent functions; Sălăgean operator; *q*-difference operator; coefficient bounds; Fekete–Szegö inequality

MSC: 30C45; 30C80; 30C50



Citation: Breaz, D.;

Murugusundaramoorthy, G.; Vijaya, K.; Cotîrlă, L.-I. Certain Class of Bi-Univalent Functions Defined by Sălăgean *q*-Difference Operator Related with Involution Numbers. *Symmetry* **2023**, *15*, 1302. https:// doi.org/10.3390/sym15071302

Academic Editor: Juan Luis García Guirao

Received: 25 May 2023 Revised: 14 June 2023 Accepted: 18 June 2023 Published: 23 June 2023



**Copyright:** © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

## 1. Introduction and Preliminaries

Let  $\mathcal{H}$  represent the class of holomorphic functions expressed as

$$\zeta(\varepsilon) = \varepsilon + \sum_{n=2}^{\infty} a_n \varepsilon^n \tag{1}$$

normalized as  $\zeta(0) = 0 = \zeta'(0) - 1$  defined in the open unit disk

$$\triangle = \{ \varepsilon \in \mathbb{C} : |\varepsilon| < 1 \}.$$

Let  $S \subset H$  consist of functions given in (1) and which are also univalent in  $\triangle$ . Let the class of starlike and convex functions of order  $\alpha$ ,  $(0 \le \alpha < 1)$ , be given by the following:

$$\mathcal{ST}(\alpha) = \left\{ \zeta \in \mathcal{H} : \Re\left(\frac{\varepsilon \, \zeta'(\varepsilon)}{\zeta(\varepsilon)}\right) > \alpha \right\}$$

$$\mathcal{CV}(\alpha) = \left\{ \zeta \in \mathcal{H} : \Re\left(\frac{\varepsilon(\zeta'(\varepsilon))'}{\zeta'(\varepsilon)}\right) > \alpha \right\}$$

A function  $\zeta \in \mathcal{H}$  is called a strongly starlike function  $SST(\alpha)$  of order  $\alpha$  ( $0 < \alpha \leq 1$ )

$$\left| \arg\left(\frac{\varepsilon\zeta'(\varepsilon)}{\zeta(\varepsilon)}\right) \right| < \frac{\alpha\pi}{2}, \quad \varepsilon \in \Delta$$

and

if

respectively.

holds. Analytic functions  $\zeta, \xi \in \mathcal{H}$  and  $\zeta$  are subordinate to  $\xi$ , written  $\zeta(\varepsilon) \prec \xi(\varepsilon)$ , provided there exist  $\omega \in \mathcal{H}$  defined on  $\Delta$  with  $\omega(0) = 0$  and  $|\omega(\zeta)| < 1$  satisfying  $\zeta(\varepsilon) = \xi(\omega(\varepsilon))$ . In [1], Ma and Minda assumed more general superordinate functions expressed as

$$\phi(\varepsilon) = 1 + B_1 \varepsilon + B_2 \varepsilon^2 + B_3 \varepsilon^3 + \cdots, \quad (B_1 > 0).$$

with positive real parts in  $\triangle$  with  $\phi(0) = 1$ ,  $\phi'(0) > 0$  and  $\phi$  maps  $\triangle$  onto a region starlike with respect to 1 and symmetric with respect to the real axis. Further, they unified various subclasses of starlike and convex functions for which either of the quantities

$$rac{\varepsilon \, \zeta'(\varepsilon)}{\zeta(\varepsilon)} \quad ext{or} \quad 1 + rac{\varepsilon \, \zeta''(\varepsilon)}{\zeta'(\varepsilon)}$$

is subordinate to a more general superordinate function given in (1).

#### 1.1. Quantum Calculus

The application of *q*-calculus was initiated by Jackson in the paper [2]. A comprehensive study on applications of *q*-calculus in operator theory may be found in the paper [3]. Research work in connection with function theory and *q*-theory together was first introduced by Ismail et al. [4].

We recall some basic definitions and concept details of *q*-calculus (see [5] and references cited therein) which are used in this paper.

For 0 < q < 1 the Jackson's *q*-derivative [2] of a function  $\zeta \in \mathcal{H}$  is given by the following definition:

$$Q_q \zeta(\varepsilon) = \begin{cases} \frac{\zeta(\varepsilon) - \zeta(q\varepsilon)}{(1-q)\varepsilon} & \text{for } \varepsilon \neq 0, \\ \zeta'(0) & \text{for } \varepsilon = 0, \end{cases}$$
(2)

and  $Q_q^2 \zeta(\varepsilon) = Q_q(Q_q \zeta(\varepsilon))$ . From (2), we have

$$Q_q \zeta(\varepsilon) = 1 + \sum_{n=2}^{\infty} a_n [n]_q \varepsilon^{n-1}$$
(3)

where

$$[n]_q = \frac{1 - q^n}{1 - q},\tag{4}$$

is sometimes called *the basic number n*. If  $q \to 1^-$ ,  $[n]_q \to n$ . For a function  $h(\varepsilon) = \varepsilon^n$ , we obtain  $\mathcal{Q}_q \varepsilon^n = \mathcal{Q}_q h(\varepsilon) == [n]_q \varepsilon^{n-1} = \frac{1-q^n}{1-q} = \varepsilon^{n-1}$  and  $\lim_{q\to 1^-} \mathcal{Q}_q h(\varepsilon) = \lim_{q\to 1^-} ([n]_q \varepsilon^{n-1}) = nz^{n-1} = h'(\varepsilon)$ , where h' is the ordinary derivative. For  $\zeta \in \mathcal{H}$ , the Sălăgean *q*-differential operator is defined and discussed by Govindaraj and Sivasubramanian [6] as given below:

$$Q_{q}^{0}\zeta(\varepsilon) = \zeta(\varepsilon)$$

$$Q_{q}^{1}\zeta(\varepsilon) = \varepsilon Q_{q}\zeta(\varepsilon)$$

$$Q_{q}^{\kappa}\zeta(\varepsilon) = \varepsilon Q_{q}(Q_{q}^{\kappa-1}\zeta(\varepsilon))$$

$$Q_{q}^{\kappa}\zeta(\varepsilon) = \varepsilon + \sum_{n=2}^{\infty} [n]_{q}^{\kappa}a_{n}\varepsilon^{n} \quad (\kappa \in \mathbb{N}_{0}, \varepsilon \in \Delta)$$
(5)

We note that  $\lim_{q} \to 1^{-}$ 

$$Q^{\kappa}\zeta(\varepsilon) = \varepsilon + \sum_{n=2}^{\infty} n^{\kappa} a_n \varepsilon^n \quad (\kappa \in \mathbb{N}_0, \varepsilon \in \Delta)$$
(6)

is the familiar Sălăgean derivative [7].

#### 3 of 11

# 1.2. Generalized Telephone Numbers (GTNs)

The classical telephone numbers (TN), prominent as involution numbers, are specified by the recurrence relation

$$Y(n) = Y(n-1) + (n-1)Y(n-2)$$
 for  $n \ge 2$ 

with

$$Y(0) = Y(1) = 1$$

Associates of these numbers with symmetric groups were perceived for the first time in 1800 by Heinrich August Rothe, who pointed out that Y(n) is the number of involutions (self-inverse permutations) in the symmetric group (see, for example [8,9]). Since involutions resemble the standard Young tableaux, it is noticeable that the *n*th involution number is consistently the number of Young tableaux on the set 1, 2, ..., n (for details, see [10]). It's worth citing that, according to John Riordan [11], recurrence relation, in fact, yields the number of construction patterns in a telephone system with *n* subscribers. In 2017, Wlochand Wolowiec-Musial [12] identified **GTNs** with the following recursion:

$$Y(x, n) = \tau Y(\tau, n-1) + (n-1)Y(\tau, n-2)$$
  $n \ge 0$  and  $\tau \ge 1$ 

with

$$Y(\tau, 0) = 1, Y(\tau, 1) = \tau$$

and studied some properties. In 2019, Bednarz and Wolowiec-Musial [13] presented a new generalization of TN by

$$Y_{\tau}(n) = Y_{\tau}(n-1) + \tau(n-1)Y_{\tau}(n-2), \quad n \ge 2 \text{ and } \tau \ge 1$$

with

$$Y_{\tau}(0) = Y_{\tau}(1) = 1$$

Recently, they found the exponential generating function and the summation formula **GTNs** represented by  $Y_{\tau}(n)$ , given by:

$$e^{x+\tau \frac{x^2}{2}} = \sum_{n=0}^{\infty} Y_{\tau}(n) \frac{x^n}{n!} \quad (\tau \ge 1).$$

As we can observe, if  $\tau = 1$ , then we obtain classical telephone numbers Y(n). Clearly,  $Y_{\tau}(n)$  is for some values of *n* given as

 $\begin{array}{ll} 1. & Y_{\tau}(0) = Y_{\tau} = 1, \\ 2. & Y_{\tau}(2) = 1 + \tau, \\ 3. & Y_{\tau}(3) = 1 + 3\tau \\ 4. & Y_{\tau}(4) = 1 + 6\tau + 3\tau^2 \\ 5. & Y_{\tau}(5) = 1 + 10\tau + 15\tau^2 \\ 6. & Y_{\tau}(6) = 1 + 15\tau + 45\tau^2 + 15\tau^3. \end{array}$ 

We now consider the function

$$F(\varepsilon) := e^{(\varepsilon + \tau \frac{\varepsilon^2}{2})} = 1 + \varepsilon + \frac{1 + \tau}{2}\varepsilon^2 + \frac{1 + 3\tau}{6}\varepsilon^3 + \frac{3\tau^2 + 6\tau + 1}{24}\varepsilon^4 + \frac{1 + 10\tau + 15\tau^2}{120}\varepsilon^5 + \cdots$$

for  $\varepsilon \in \mathbb{D}$  and study  $\zeta \in \mathcal{H}$  (see [14,15]).

#### 1.3. Bi-Univalent Functions

The Koebe One-quarter Theorem [16] ensures that the image of  $\triangle$  under every univalent function  $\zeta \in \mathcal{H}$  contains a disk of radius  $\frac{1}{4}$ . Thus every univalent function  $\zeta$  has an inverse  $\zeta^{-1}$  satisfying  $\zeta^{-1}(\zeta(\varepsilon)) = \varepsilon$ ,  $(\varepsilon \in \triangle)$  and  $\zeta(\varepsilon^{-1}(\zeta)) = \zeta(|\zeta| < r_0(\zeta), r_0(\zeta) \geq \frac{1}{4})$ .

A function  $\zeta \in \mathcal{H}$  is said to be bi-univalent in  $\triangle$  if both  $\zeta$  and  $\zeta^{-1}$  are univalent in  $\triangle$ . Let  $\Sigma$  denote the class of bi-univalent functions defined in the unit disk  $\triangle$ . The functions  $\frac{\varepsilon}{1-\varepsilon} - \log(1-\varepsilon)$ ,  $\frac{1}{2}\log(\frac{1+\varepsilon}{1-\varepsilon})$  are in the class  $\Sigma$  so it is not empty(see details in [17]). Since  $\zeta \in \Sigma$  has the Maclaurin series given by (1), a computation shows that its inverse  $\zeta = \zeta^{-1}$  has the expansion

$$\xi(\varsigma) = \zeta^{-1}(\varsigma) = \varsigma - a_2 \varsigma^2 + (2a_2^2 - a_3)\varsigma^3 + \cdots.$$
(7)

Various classes of bi-univalent functions were introduced and studied in recent times. The study of bi-univalent functions gained momentum mainly due to the work of Srivastava et al. [17]. Motivated by this, many researchers [18–33] (also the references cited therein) recently investigated several interesting subclasses of the class  $\Sigma$  and found non-sharp estimates on the first two Taylor–Maclaurin coefficients. Motivated by recent study on telephone numbers [34] and using the Sălăgean *q*-differential operator defined by (5), for functions  $\xi$  of the form (7) as given in [33], we have

$$\mathcal{Q}_{q}^{\kappa}\xi(\varsigma) = \varsigma - a_{2}[2]_{q}^{\kappa}\varsigma^{2} + (2a_{2}^{2} - a_{3})[3]_{q}^{\kappa}\varsigma^{3} + \cdots$$
(8)

using that in this article first time we introduce a new subclass  $\mathcal{P}\Sigma_q^{\kappa}(\vartheta, \mathcal{F})$  of  $\Sigma$  in association with involution numbers and find estimates on the coefficients  $|a_2|$  and  $|a_3|$  for  $\zeta \in \mathcal{P}\Sigma_q^{\kappa}(\lambda, \mathcal{F})$  by Ma–Minda subordination. We also obtain the Fekete–Szegö problem by using the initial coefficient values of  $a_2$  and  $a_3$ .

**Definition 1.** Let  $0 \le \vartheta \le 1$ . We say that  $\zeta \in \Sigma$  belongs to the class  $\mathcal{P}\Sigma_q^{\kappa}(\vartheta, F)$  if

$$\frac{(1-\vartheta)\mathcal{Q}_{q}^{k+1}\zeta(\varepsilon)+\vartheta\mathcal{Q}_{q}^{k+2}\zeta(\varepsilon)}{(1-\vartheta)\mathcal{Q}_{q}^{\kappa}\zeta(\varepsilon)+\vartheta\mathcal{Q}_{q}^{k+1}\zeta(\varepsilon)}\prec F(\varepsilon)$$
(9)

and

$$\frac{(1-\vartheta)\mathcal{Q}_{q}^{\kappa+1}\xi(\varsigma) + \vartheta\mathcal{Q}_{q}^{k+2}\xi(\varsigma)}{(1-\vartheta)\mathcal{Q}_{q}^{\kappa}\xi(\varsigma) + \vartheta\mathcal{Q}_{q}^{k+1}\xi(\varsigma)} \prec F(\varsigma), \tag{10}$$

where  $Q_q^{\kappa} \xi$  is given by (8).

**Example 1.** Taking  $\vartheta = 0$  we have  $\mathcal{P}\Sigma_q^{\kappa}(0, F) \equiv \mathcal{S}\Sigma_q^{\kappa}(F)$  and  $\zeta \in \Sigma$  is in  $\zeta \in \mathcal{S}\Sigma_q^{\kappa}(F)$  if the following subordination holds:

$$\frac{\mathcal{Q}_{q}^{\kappa+1}\zeta(\varepsilon)}{\mathcal{Q}_{q}^{\kappa}\zeta(\varepsilon)} \prec F(\zeta) \quad \text{and} \quad \frac{\mathcal{Q}_{q}^{\kappa+1}\xi(\varsigma)}{\mathcal{Q}_{q}^{\kappa}\xi(\varsigma)} \prec F(\varsigma),$$

where  $Q_a^{\kappa} \xi$  is given by (8).

**Example 2.** Taking  $\vartheta = 1$  we have  $\mathcal{P}\Sigma_q^{\kappa}(1, F) \equiv \mathcal{K}\Sigma_q^{\kappa}(F)$  and  $\zeta \in \Sigma$  is in  $\zeta \in \mathcal{K}\Sigma_q^{\kappa}(F)$  if the following subordination holds:

$$\frac{\mathcal{Q}_q^{\kappa+2}\zeta(\varepsilon)}{\mathcal{Q}_q^{\kappa+1}\zeta(\varepsilon)} \prec F(\varepsilon) \quad \text{and} \quad \frac{\mathcal{Q}_q^{\kappa+2}\xi(\varsigma)}{\mathcal{Q}_q^{\kappa+1}\xi(\varsigma)} \prec F(\varsigma)$$

where  $Q_a^{\kappa} \xi$  is given by (8).

We need the following lemmas for our investigation.

**Lemma 1.** (see [16], p. 41) Let  $\mathcal{P}$  be the class of all analytic functions  $p(\varepsilon)$  of the form

$$p(\varepsilon) = 1 + \sum_{n=1}^{\infty} p_n \varepsilon^n$$
(11)

satisfying  $\Re(p(\varepsilon)) > 0$  ( $\varepsilon \in \Delta$ ) and p(0) = 1. Then

$$|p_n| \leq 2 \ (n = 1, 2, 3, \ldots).$$

This inequality is sharp for each n. In particular, equality holds for all n for the function

$$p(\varepsilon) = \frac{1+\varepsilon}{1-\varepsilon} = 1 + \sum_{n=1}^{\infty} 2\varepsilon^n.$$

# 2. Coefficient Bounds for $\zeta \in \mathcal{P}\Sigma_q^{\kappa}(\vartheta, \digamma)$

**Theorem 1.** Let  $\zeta$  given by (1) be in the class  $\mathcal{P}\Sigma_q^{\kappa}(\vartheta, F)$ . Then

$$|a_2| \le \frac{2}{\sqrt{|2[q\{1+\vartheta(q+q^2)\}[2]_q[3]_q^{\kappa}-q(1+\vartheta q)^2[2]_q^{2k}]+q^2(1+\vartheta q)^2[2]_q^{2k}(1-\tau)|}}$$
(12)

and

$$|a_3| \le \frac{1}{q} \left( \frac{1}{q(1+\vartheta q)^2 [2]_q^{2k}} + \frac{1}{\{1+\vartheta(q+q^2)\}^{[2]} [3]_q^{\kappa}} \right).$$
(13)

**Proof.** We can write  $s(\varepsilon)$  and  $t(\varepsilon)$  as

$$s(\varepsilon) := \frac{1+u(\varepsilon)}{1-u(\varepsilon)} = 1 + s_1\varepsilon + s_2\varepsilon^2 + \cdots$$

and

$$t(\varepsilon) := \frac{1+v(\varepsilon)}{1-v(\varepsilon)} = 1 + t_1\varepsilon + t_2\varepsilon^2 + \cdots$$

or, equivalently,

$$u(\varepsilon) := \frac{s(\varepsilon) - 1}{s(\varepsilon) + 1} = \frac{1}{2} \left[ s_1 \varepsilon + \left( s_2 - \frac{s_1^2}{2} \right) \varepsilon^2 + \cdots \right]$$
(14)

and

$$v(\varepsilon) := \frac{t(\varepsilon) - 1}{t(\varepsilon) + 1} = \frac{1}{2} \left[ t_1 \varepsilon + \left( t_2 - \frac{t_1^2}{2} \right) \varepsilon^2 + \cdots \right].$$
(15)

Then  $s(\varepsilon)$  and  $t(\varepsilon)$  are analytic in  $\triangle$  where s(0) = 1 = t(0). Since

$$u, v : \triangle \to \triangle$$

we say that  $s(\varepsilon)$  and  $t(\varepsilon)$  have a positive real part in  $\triangle$ , and

 $|s_i| \le 2$  and  $|t_i| \le 2$ , (i = 1, 2, 3, ...).

Further we have

$$F(u(\varepsilon)) = e^{u(\varepsilon) + \tau \frac{[u(\varepsilon)]^2}{2})} = e^{\left(\frac{s(\varepsilon) - 1}{s(\varepsilon) + 1} + \tau \frac{[\frac{s(\varepsilon) - 1}{s(\varepsilon) + 1}]^2}{2}\right)}$$
  
=  $1 + \frac{s_1}{2}\varepsilon + \left(\frac{s_2}{2} + \frac{(\tau - 1)s_1^2}{8}\right)\varepsilon^2$   
+  $\left(\frac{s_3}{2} + (\tau - 1)\frac{s_1s_2}{4} + \frac{(1 - 3\tau)}{48}s_1^3\right)\varepsilon^3 + \cdots$  (16)

$$F(v(\varsigma)) = e^{v(\varsigma) + \tau \frac{[v(\varsigma)]^2}{2})} = e^{\left(\frac{t(\varsigma) - 1}{t(\varsigma) + 1} + \tau \frac{[\frac{t(\varsigma) - 1}{t(\varsigma) + 1}]^2}{2}\right)}$$
  
=  $1 + \frac{t_1}{2}\varsigma + \left(\frac{t_2}{2} + \frac{(\tau - 1)t_1^2}{8}\right)\varsigma^2$   
+  $\left(\frac{t_3}{2} + (\tau - 1)\frac{t_1t_2}{4} + \frac{(1 - 3\tau)}{48}t_1^3\right)\varsigma^3 + \cdots$ 

Using (14) and (15) in (9) and (10) respectively, we have

$$\frac{(1-\vartheta)\mathcal{Q}_{q}^{\kappa+1}\zeta(\varepsilon)+\vartheta\mathcal{Q}_{q}^{\kappa+2}\zeta(\varepsilon)}{(1-\vartheta)\mathcal{Q}_{q}^{\kappa}\zeta(\varepsilon)+\vartheta\mathcal{Q}_{q}^{\kappa+1}\zeta(\varepsilon)}=F(u(\varepsilon))=1+\frac{s_{1}}{2}\varepsilon+\left(\frac{s_{2}}{2}+\frac{(\tau-1)s_{1}^{2}}{8}\right)\varepsilon^{2}+\cdots$$
(17)

and

$$\frac{(1-\vartheta)\mathcal{Q}_{q}^{\kappa+1}\xi(\varsigma)+\vartheta\mathcal{Q}_{q}^{\kappa+2}\xi(\varsigma)}{(1-\vartheta)\mathcal{Q}_{q}^{\kappa}\xi(\varsigma)+\vartheta\mathcal{Q}_{q}^{\kappa+1}\xi(\varsigma)}=F(v(\varsigma))=1+\frac{t_{1}}{2}\varsigma+\left(\frac{t_{2}}{2}+\frac{(\tau-1)t_{1}^{2}}{8}\right)\varsigma^{2}+.$$
 (18)

We obtain the following relations

$$q(1+\vartheta q)[2]_{q}^{\kappa}a_{2} = \frac{1}{2}s_{1}, \qquad (19)$$

$$q\left\{1+\vartheta(q+q^2)\right\}[2]_q[3]_q^{\kappa}a_3-q(1+\vartheta q)^2[2]_q^{2\kappa}a_2^2 = \frac{1}{2}(s_2-\frac{s_1^2}{2})+\frac{1+\tau}{8}s_1^2, \quad (20)$$

$$-q(1+\vartheta q)[2]_{q}^{\kappa}a_{2} = \frac{1}{2}t_{1}$$
(21)

and

$$q\left\{1+\vartheta(q+q^2)\right\}[2]_q[3]_q^\kappa(2a_2^2-a_3)-q(1+\vartheta q)^2[2]_q^{2\kappa}a_2^2=\frac{1}{2}(t_2-\frac{t_1^2}{2})+\frac{1+\tau}{8}t_1^2.$$
 (22)

 $s_1 = -t_1$ 

From (19) and (21) it follows that

and

$$8q^{2}(1+\vartheta q)^{2}[2]_{q}^{2\kappa}a_{2}^{2} = (s_{1}^{2}+t_{1}^{2}).$$
(24)

From (20), (22) and (24), we obtain

$$a_{2}^{2} = \frac{(s_{2}+t_{2})}{2\{2[q\{1+\vartheta(q+q^{2})\}[2]_{q}[3]_{q}^{\kappa}-q(1+\vartheta q)^{2}[2]_{q}^{2\kappa}]+q^{2}(1+\vartheta q)^{2}[2]_{q}^{2\kappa}(1-\tau)\}}$$
(25)

Applying Lemma 1 for the coefficients  $s_2$  and  $t_2$ , we immediately obtain the desired estimate on  $|a_2|$  as asserted in (12).

By subtracting (22) from (20) and using (23) and, we have

$$a_3 = a_2^2 + \frac{s_2 - t_2}{4q\{1 + \vartheta(q + q^2)\}[2]_q[3]_q^{\kappa}}.$$
(26)

If we use (24) in the relation (26), we will obtain

$$a_3 = \frac{s_1^2 + t_1^2}{8q^2(1+\vartheta q)^2 [2]_q^{2\kappa}} + \frac{s_2 - t_2}{4q\{1+\vartheta(q+q^2)\}[2]_q[3]_q^{\kappa}}.$$
(27)

If we apply Lemma 1 once again for  $s_1, s_2, t_1$  and  $t_2$ , we obtain the desired estimate on  $|a_3|$  as asserted in (13).  $\Box$ 

(23)

By taking  $\vartheta = 1$  and  $\vartheta = 0$  in Theorem 1 we can state the estimates for f, in the function classes  $S\Sigma_q^{\kappa}(F)$  and  $\mathcal{K}\Sigma_q^{\kappa}(F)$  respectively given in Example 1 and 2 which are new and not yet discussed in association with involution numbers.

## 3. The Fekete–Szegö Problem for $\zeta \in \mathcal{P}\Sigma_q^{\kappa}(\vartheta, F)$

The Fekete–Szegö inequality is one of the well-known problems with the coefficients of univalent analytic functions. It was first given by [35], as

$$|a_3 - va_2^2| \le \begin{cases} 3 - 4v, & \text{if } v \le 0, \\ 1 + 2e^{\frac{-2v}{1-v}}, & \text{if } 0 \le v \le 1, \\ 4v - 3, & \text{if } v \ge 1. \end{cases}$$

**Lemma 2** ([36]). Let  $k, l \in \mathbb{R}$  and  $\varepsilon_1, \varepsilon_2 \in \mathbb{C}$ . If  $|\varepsilon_1| < R$  and  $|\varepsilon_2| < R$ , then

$$|(k+l)\varepsilon_1 + (k-l)\varepsilon_2| \le \begin{cases} 2|k|R, & |k| \ge |l|, \\ 2|l|R, & |k| \le |l|. \end{cases}$$

Now,  $\zeta \in \mathcal{P}\Sigma_q^{\kappa}(\vartheta, F)$  we obtain the Fekete–Szegö inequality  $|a_3 - \aleph a_2^2|$ .

**Theorem 2.** Let  $\zeta \in \mathcal{P}\Sigma_q^{\kappa}(\vartheta, F)$  be given by (1). Then for  $\aleph \in \mathbb{R}$ 

$$|a_{3} - \aleph a_{2}^{2}| \leq \begin{cases} \frac{1}{q\left\{1 + \vartheta(q+q^{2})\right\}[2]_{q}[3]_{q}^{\kappa}}, \\ for \ |\aleph - 1| \leq \left|1 - \frac{(1 + \vartheta q)^{2}[2]_{q}^{2k-1}}{\{1 + \vartheta(q+q^{2})\}[3]_{q}^{\kappa}} + \frac{q(1 + \vartheta q)^{2}[2]_{q}^{2\kappa-1}}{\{1 + \vartheta(q+q^{2})\}[3]_{q}^{\kappa}}, \\ \frac{1}{\left|2[q\left\{1 + \vartheta(q+q^{2})\right\}[2]_{q}[3]_{q}^{\kappa} - 2q(1 + \vartheta q)^{2}[2]_{q}^{2\kappa}]B_{1}^{2} + q^{2}(1 + \vartheta q)^{2}[2]_{q}^{2\kappa}(1 - \tau)\right|}, \\ for \ |\aleph - 1| \geq \left|1 - \frac{(1 + \vartheta q)^{2}[2]_{q}^{2\kappa-1}}{\{1 + \vartheta(q+q^{2})\}[3]_{q}^{\kappa}} + \frac{q(1 + \vartheta q)^{2}[2]_{q}^{2\kappa-1}}{\{1 + \vartheta(q+q^{2})\}[3]_{q}^{\kappa}}, \end{cases}$$
(28)

**Proof.** From (25) and(26) it follows that

$$a_3 - \aleph a_2^2 = \left(\varphi(\aleph) + \frac{1}{4q\{1 + \vartheta(q + q^2)\}[2]_q[3]_q^\kappa}\right) s_2 + \left(\varphi(\aleph) - \frac{1}{4q\{1 + \vartheta(q + q^2)\}[2]_q[3]_q^\kappa}\right) t_2,$$

where

$$\varphi(\aleph) = \frac{(1-\aleph)}{2\Big\{2[q\{1+\vartheta(q+q^2)\}[2]_q[3]_q^{\kappa} - q(1+\vartheta q)^2[2]_q^{2\kappa}] + q^2(1+\vartheta q)^2[2]_q^{2\kappa}(1-\tau)\Big\}}.$$

Then, applying the above Lemma 1 and Lemma 2, we get

$$\left| a_{3} - \aleph a_{2}^{2} \right| \leq \begin{cases} \frac{1}{q\{1 + \vartheta(q + q^{2})\}[2]_{q}[3]_{q}^{\kappa}}, & for \ 0 \leq |\varphi(\aleph)| \leq \frac{1}{4\{1 + \vartheta(q + q^{2})\}[2]_{q}[3]_{q}^{\kappa}} \\ 4|\varphi(\aleph)|, & for \ |\varphi(\aleph)| \geq \frac{1}{4\{1 + \vartheta(q + q^{2})\}[2]_{q}[3]_{q}^{\kappa}} \end{cases}$$

which yields the desired inequality.  $\Box$ 

Specifically by fixing  $\aleph = 1$  we obtain

$$|a_3 - \aleph a_2^2| \le \frac{1}{q\{1 + \vartheta(q + q^2)\}[2]_q[3]_q^{\kappa}}$$

Further by fixing  $\vartheta = 0$  and  $\vartheta = 1$  in the Theorem 3, respectively we arrive at the Fekete–Szegö inequality for  $\zeta \in S\Sigma_q^{\kappa}(F)$  and  $\zeta \in \mathcal{K}\Sigma_q^{\kappa}(F)$ .

## 4. Bi-Univalent Function Class $\mathcal{F}\Sigma_q^{\kappa}(\wp,\beta)$

In the section, motivated by Frasin et al. [20], we will give the following new subclass involving the Sălăgean type *q*-difference operator linked with **GTNs** and also its related classes its worthy to note that these classes have not been discussed so far.

**Definition 2.** A function  $\zeta \in \Sigma$  given by (1) is said to be in the class

$$\mathcal{F}\Sigma_{q}^{\kappa}(\wp, F) \quad (0 \le \wp \le 1, \varepsilon, \varsigma \in \Delta)$$

if the following conditions hold:

$$\left((1-\wp)\frac{\mathcal{Q}_{q}^{\kappa}\zeta(\varepsilon)}{\varepsilon}+\wp\frac{\mathcal{Q}_{q}^{\kappa+1}\zeta(\varepsilon)}{\varepsilon}\right)\prec F(\varepsilon)$$
(29)

and

$$\left((1-\wp)\frac{\mathcal{Q}_{q}^{\kappa}\xi(\varsigma)}{\varsigma}+\wp\frac{\mathcal{Q}_{q}^{\kappa+1}\xi(\varsigma)}{\varsigma}\right)\prec F(\varepsilon).$$
(30)

**Example 3.** A function  $\zeta \in \Sigma$ , members of which are given by (1) and

1. for  $\wp = 0$ , let  $\mathcal{F}\Sigma_q^{\kappa}(0, F) =: \mathcal{R}\Sigma_q^{\kappa}(F)$ , denotes the subclass of  $\Sigma$ , and the conditions

$$\left(\frac{\mathcal{Q}_{q}^{\kappa}\zeta(\varepsilon)}{\varepsilon}\right) \prec F(\varepsilon) \quad and \quad \Re\left(\frac{\mathcal{Q}_{q}^{\kappa}\xi(\varsigma)}{\varsigma}\right) \prec F(\varsigma)$$

hold.

2. For  $\wp = 1$ , let  $\mathcal{F}\Sigma_q^{\kappa}(1, F) =: \mathcal{H}\Sigma_q^{\kappa}(F)$  denote the subclass of  $\Sigma$  and satisfy the conditions

$$\left(\frac{\mathcal{Q}_q^{\kappa+1}\zeta(\varepsilon)}{\varepsilon}\right) \prec F(\varepsilon) \quad and \quad \left(\frac{\mathcal{Q}_q^{\kappa+1}\xi(\varsigma)}{\varsigma}\right) \prec F(\varsigma).$$

**Theorem 3.** Let  $\zeta \in \mathcal{F}\Sigma_q^{\kappa}(\wp, F)$ . Then

$$|a_2| \le \frac{2}{\sqrt{|2[1+(q+q^2)\wp][3]_q^{\kappa}+q^2(1+q\wp)^2[2]_q^{2\kappa}(1-\tau)|}}$$
(31)

$$|a_3| \le \frac{1}{(1+q\wp)^2 [2]_q^{2\kappa}} + \frac{1}{(1+(q+q^2)\wp)[3]_q^{\kappa}}.$$
(32)

and

$$\left| a_3 - \hbar a_2^2 \right| \le \begin{cases} \frac{1}{4(1 + (q+q^2)\wp)[3]_q^\kappa}, & for \ 0 \le |\psi(\hbar)| \le \frac{1}{4(1 + (q+q^2)\wp)[3]_q^\kappa} \\ \\ 4|\psi(\hbar)|, & for \ |\psi(\hbar)| \ge \frac{1}{4(1 + (q+q^2)\wp)[3]_q^\kappa} \end{cases}$$

where

$$\psi(\hbar) = \frac{1-\hbar}{2\Big\{2[1+(q+q^2)\wp][3]_q^{\kappa}+(1+q\wp)^2[2]_q^{2\kappa}(1-\tau)\Big\}}$$

**Proof.** Suppose that  $\zeta \in \mathcal{F}\Sigma_q^{\kappa}(\wp, F, )$  satisfies the conditions given in Definition 2 and, following the steps as in Theorem 1,

$$(1-\wp)\frac{\mathcal{Q}_{q}^{\kappa}\zeta(\varepsilon)}{\varepsilon} + \wp\frac{\mathcal{Q}_{q}^{\kappa+1}\zeta(\varepsilon)}{\varepsilon} = 1 + \frac{s_{1}}{2}\varepsilon + \left(\frac{s_{2}}{2} + \frac{(\tau-1)s_{1}^{2}}{8}\right)\varepsilon^{2} +,$$
(33)

$$(1-\wp)\frac{\mathcal{Q}_q^{\kappa}\xi(\varsigma)}{\varsigma} + \wp\frac{\mathcal{Q}_q^{\kappa+1}\xi(\varsigma)}{\varsigma} = 1 + \frac{t_1}{2}\varsigma + \left(\frac{t_2}{2} + \frac{(\tau-1)t_1^2}{8}\right)\varsigma^2 +, \tag{34}$$

Now, by comparing the corresponding coefficients in (33) and (34), we obtain,

$$(1+q\wp)[2]_q^{\kappa}a_2 = \frac{1}{2}s_1,\tag{35}$$

$$(1 + (q + q^2)\wp)[3]_q^{\kappa}a_3 = \frac{1}{2}(s_2 - \frac{s_1^2}{2}) + \frac{1 + \tau}{8}s_1^2,$$
(36)

$$-(1+q_{\wp})[2]_{q}^{\kappa}a_{2} = \frac{1}{2}t_{1}, \tag{37}$$

$$(1 + (q + q^2)\wp)[3]_q^{\kappa}(2a_2^2 - a_3) = \frac{1}{2}(t_2 - \frac{t_1^2}{2}) + \frac{1 + \tau}{8}t_1^2,$$
(38)

From (35) and (37), we obtain

$$a_2 = \frac{1}{2(1+q\wp)[2]_q^{\kappa}} s_1 = -\frac{1}{2(1+q\wp)[2]_q^{\kappa}} t_1, \tag{39}$$

which implies

$$s_1 = -t_1 \tag{40}$$

and

$$8(1+q\wp)^2 [2]_q^{2\kappa} a_2^2 = s_1^2 + t_1^2.$$
(41)

Adding (36) and (38), then using (41), we obtain

$$a_2^2 = \frac{s_2 + t_2}{2\left\{2[1 + (q + q^2)\wp][3]_q^{\kappa} + (1 + q\wp)^2[2]_q^{2\kappa}(1 - \tau)\right\}}$$
(42)

Applying Lemma 1 for the coefficients  $s_2$  and  $t_2$ , we immediately have the desired estimate on  $|a_2|$  as asserted in (31). By subtracting (38) from (36) and using (40) and, we obtain

$$a_3 = a_2^2 + \frac{s_2 - t_2}{4\{1 + (q + q^2)\wp\}[3]_q^\kappa}.$$
(43)

Next using (41) in (43), we finally obtain

$$a_{3} = \frac{s_{1}^{2} + t_{1}^{2}}{8(1+q\wp)^{2}[2]_{q}^{2\kappa}} + \frac{s_{2} - t_{2}}{4(1+(q+q^{2})\wp)[3]_{q}^{\kappa}}.$$
(44)

Applying Lemma 1 once again for the coefficients  $s_1$ ,  $s_2$ ,  $t_1$  and  $t_2$ , we obtain the desired estimate on  $|a_3|$  as asserted in (32). From (43) and (42) it follows that

$$a_{3} - \hbar a_{2}^{2} = \left(\psi(\hbar) + \frac{1}{4(1 + (q + q^{2})\wp)[3]_{q}^{\kappa}}\right)s_{2} + \left(\psi(\hbar) - \frac{1}{4(1 + (q + q^{2})\wp)[3]_{q}^{\kappa}}\right)t_{2},$$

where

$$\psi(\hbar) = \frac{1-\hbar}{2\Big\{2[1+(q+q^2)\wp][3]_q^{\kappa} + (1+q\wp)^2[2]_q^{2\kappa}(1-\tau)\Big\}}$$

Then, applying Lemma 1, we have

$$\left| a_3 - \hbar a_2^2 \right| \le \begin{cases} \frac{1}{4(1 + (q+q^2)\wp)[3]_q^\kappa}, & \text{for } 0 \le |\psi(\hbar)| \le \frac{1}{4(1 + (q+q^2)\wp)[3]_q^\kappa} \\ \\ 4|\psi(\hbar)|, & \text{for } |\psi(\hbar)| \ge \frac{1}{4(1 + (q+q^2)\wp)[3]_q^\kappa} \end{cases}$$

which yields the desired inequality.  $\Box$ 

By allowing fixing  $\wp = 0$  and  $\wp = 1$  in Theorem 3 we can state the estimates for f, in the function classes  $\mathcal{R}\Sigma_q^{\kappa}(F)$  and  $\mathcal{H}\Sigma_q^{\kappa}(F)$  respectively given in Example 3, further by taking  $q \to 1^-$  we state various subclasses of  $\Sigma$  and above results, which are new and not yet discussed in association with involution numbers.

#### 5. Conclusions

The results presented in this paper followed by the work of Srivastava et al. [17] related with Generalized telephone phone number (GTN). This work presented the initial Taylor coefficient and the Fekete–Szegö problem results for this newly defined function class  $\mathcal{P}\Sigma_q^{\kappa}(\vartheta, F)$  and  $\mathcal{F}\Sigma_q^{\kappa}(\vartheta, F)$ . By specializing the parameters in Theorem 1 and 3, given in Examples 1–3, we can investigate problems not yet examined for GTN. Also by taking  $q \rightarrow 1^-$  we state various subclasses of  $\Sigma$  and state results analogues to Theorem 1 and 3. This paper can motivate many researchers to extend this idea to another classes of bi-univalent functions [37], Sakaguchi-type functions [38] (other classes of functions cited in this article) and further second Hankel determinant results for function class  $\Sigma$ , as discussed in [39].

Author Contributions: Conceptualization, D.B., G.M., K.V. and L.-I.C.; methodology, D.B., G.M., K.V. and L.-I.C.; validation, G.M. and L.-I.C.; formal analysis, D.B., G.M., K.V. and L.-I.C.; investigation, D.B., G.M., K.V. and L.-I.C.; resources, D.B., G.M., K.V. and L.-I.C.; writing—original draft preparation, D.B., G.M., K.V. and L.-I.C.; writing—review and editing, D.B., G.M., K.V. and L.-I.C.; supervision, D.B., G.M., K.V. and L.-I.C.; project administration, D.B., G.M., K.V. and L.-I.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

**Conflicts of Interest:** The authors declare no conflict of interest.

#### References

- 1. Ma, D.; Minda, W.C. A unified treatment of some special classes of functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; International Press Inc.: Cambridge, MA, USA, 1994; pp. 157–169.
- 2. Jackson, F.H. On *q*-functions and a certain difference operator. *Trans. R. Soc. Edinb.* **1908**, 46, 253–281. [CrossRef]
- 3. Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer: New York, NY, USA, 2013.
- 4. Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77-84. [CrossRef]
- 5. Srivastava, H.M. Operators of basic (or *q*-) calculus and fractional *q*-calculus and their applications in geometric function theory of complex analysis. *Iran. J. Sci. Technol. Trans. A Sci.* **2020**, *44*, 327–344. [CrossRef]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic function related to conic domains involving *q*-calculus. *Anal. Math.* 2017, 43, 475–487. [CrossRef]
- Sălăgean, G.S. Subclasses of univalent functions, Complex Analysis. In Proceedings of the Fifth Romanian Finish Seminar, Bucharest, Romania, 28 June–3 July 1983; pp. 362–372.
- 8. Chowla, S.; Herstein, I.N.; Moore, W.K. On recursions connected with symmetric groups I. *Can. J. Math.* **1951**, *3*, 328–334. [CrossRef]

- 9. Knuth, D.E. The Art of Computer Programming; Addison-Wesley: Boston, MA, USA, 1973; Volume 3.
- 10. Beissinger, J.S. Similar Constructions for Young Tableaux and Involutions, and Their Applications to Shiftable Tableaux. *Discrete Math.* **1987**, *67*, 149–163. [CrossRef]
- 11. Riordan, J. Introduction to Combinatorial Analysis; Princeton University Press: Dover, UK, 2002.
- 12. Włoch, A.; Wołowiec-Musiał, M. On generalized telephone number, their interpretations and matrix generators. *Util. Math.* **2017**, *10*, 531–539.
- 13. Bednarz, U.; Wolowiec-Musial, M. On a new generalization of telephone numbers. *Turk. J. Math.* **2019**, *43*, 1595–1603. [CrossRef]
- 14. Deniz, E. Sharp coefficient bounds for starlike functions associated with generalized telephone numbers. *Bull. Malays. Math. Sci. Soc.* **2020**, *44*, 1525–1542. [CrossRef]
- 15. Murugusundaramoorthy, G.; Vijaya, K. Certain subclasses of snalytic functions associated with generalized telephone numbers. *Symmetry* **2022**, *14*, 1053. [CrossRef]
- 16. Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften Series; Springer: New York, NY, USA, 1983.
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. *Appl. Math. Lett.* 2010, 23, 1188–1192. [CrossRef]
- Brannan, D.A.; Clunie, J.; Kirwan, W.E. Coefficient estimates for a class of star-like functions. *Can. J. Math.* 1970, 22, 476–485. [CrossRef]
- 19. Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Stud. Univ. Babeş-Bolyai Math. 1986, 31, 70–77.
- 20. Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [CrossRef]
- Totoi, A.; Cotîrlă, L.I. Preserving Classes of Meromorphic Functions through Integral Operators. Symmetry 2022, 14, 1545. [CrossRef]
- 22. Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63-68. [CrossRef]
- 23. Srivastava, H.M.; Shaba, T.G.; Murugusundaramoorthy, G.; Wanas, A.K.; Oros, G.I. The Fekete-Szego functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operator. *AIMS Math.* **2022**, *8*, 340–360. [CrossRef]
- 24. Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [CrossRef]
- Kazımoğlu, S.; Deniz, E.; Cotîrlă, L.I. Geometric Properties of Generalized Integral Operators Related to The Miller–Ross Function. Axioms 2023, 12, 563. [CrossRef]
- 26. Sakar, F.M.; Aydogan, S.M. Initial bounds forcertain subclasses of generalized Sălăgean type bi-univalent functions associated with the Horadam Polynomials. *J. Qual. Meas. Anal.* **2019**, *15*, 89–100.
- 27. Sakar, F.M.; Canbulat, A. Inequalities on coefficients for certain classes of m-fold symmetric and bi-univalent functions equipped with Faber polynomial. *Turk. J. Math.* **2019**, *43*, 293–300. [CrossRef]
- Çağlar, M.; Deniz, E. Initial coefficients for a subclass of bi-univalent functions defined by Sălăgean differential operator. Commun. Facsi. Univ. Ank. Ser. A 1 Math. Stat. 2017, 66, 85–91.
- Çağlar, M. Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions. *Comptes Rendus L'acad. Bulg. Sci.* 2019, 72, 1608–1615.
- Srivastava, H.M.; Wanas, A.K.; Murugusundaramoorthy, G. A certain family of bi-univalent functions associated with the Pascal distribution series based upon the Horadam polynomials. *Surv. Math. Appl.* 2021, 16, 193–205.
- 31. Zaprawa, P. Estimates of initial coefficients for Biunivalent functions. *Abstr. Appl. Anal.* 2014, *36*, 357480.
- Srivastava, H.M.; Murugusundaramoorty, G.; El-Deeb, S.M. Faber polynomial coefficient estimates of bi-close-to-convex functions connected with Borel distribution of the Mittag-Leffler-type. J. Nonlinear Var. Anal. 2021, 5, 103–118.
- 33. Vijaya, K.; Kasthuri, M.; Murugusundaramoorthy, G. Coefficient bounds for subclasses of bi-univalent functions defined by the Sălăgean derivative operator. *Bol. Asoc. Mat. Venez.* **2014**, *21*, 2.
- 34. Vijaya, K.; Murugusundaramoorthy, G. Bi-Starlike function of complex order involving Mathieu-type series associated with telephone numbers. *Symmetry* **2023**, *15*, 638. [CrossRef]
- 35. Fekete, M.; Szegö, G. Eine Bemerkung über ungerade schlichte Functionen. J. Lond. Math. Soc. 1933, 8, 85–89. [CrossRef]
- Zaprawa, P. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 169–178. [CrossRef]
- 37. Srivastava, H.M.; Motamednezhad, A.; Salehian, S. Coefficients of a comprehensive subclass of meromorphic bi univalent functions associated with the Faber polynomial expansion. *Axioms* **2021**, *10*, 27. [CrossRef]
- Cotîrlă, L.I.; Wanas, A.K. Applications of Laguerre polynomials for Bazilevic and θ-Pseudo-Starlike bi univalent functionsassociated with Sakaguchi-type functions. *Symmetry* 2023, 15, 406. [CrossRef]
- 39. Srivastava, H.M.; Murugusundaramoorty, G.; Bulboacă, T. The second Hankel determinant for subclasses of Bi-univalent functions associated with a nephroid domain. *Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat.* **2022**, *116*, 145. [CrossRef]

**Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.