Next Article in Journal
A Transformation Factor for Superluminal Motion That Preserves Symmetrically the Spacetime Intervals
Previous Article in Journal
Characterization of Ricci Almost Soliton on Lorentzian Manifolds
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Improved Upper Bounds of the Third-Order Hankel Determinant for Ozaki Close-to-Convex Functions

1
School of Mathematical Sciences, Yangzhou Polytechnic College, Yangzhou 225009, China
2
College of Mathematics and Computer Science, Chifeng University, Chifeng 024000, China
3
Students’ Affairs Office, Chuzhou Polytechnic College, Chuzhou 239000, China
4
Faculty of Humanities and Social Sciences, Guangzhou Civil Aviation College, Guangzhou 510403, China
5
Department of Basic Disciplines, Chuzhou Polytechnic College, Chuzhou 239000, China
*
Author to whom correspondence should be addressed.
Symmetry 2023, 15(6), 1176; https://doi.org/10.3390/sym15061176
Submission received: 4 May 2023 / Revised: 24 May 2023 / Accepted: 26 May 2023 / Published: 31 May 2023

Abstract

:
L e t N be the class of functions that convex in one direction and M denote the class of functions z f ( z ) , where f N . In the paper, the third-order Hankel determinants for these classes are estimated. The estimates of H 3 , 1 ( f ) obtained in the paper are improved.

1. Introduction and Definitions

Let H U denote the class of functions analytic in the open unit disk U = z C : z < 1 and A be the class of functions f H U , with the form
f ( z ) = z + n = 2 a n z n
with the standard normalization f ( 0 ) = 0 , f 0 = 1 . Let S denote the subclass of A consisting of functions that are univalent in U .
Using H k , n f where k , n N = { 1 , 2 , · · · } , we denote the Hankel determinant of functions f A of the form (1), which is defined by
H k , n f : = a n a n + 1 a n + k 1 a n + 1 a n + 2 a n + k a n + k 1 a n + k a n + 2 k 2 ( a 1 = 1 ) .
Several researchers, including Pommerenke [1,2], Hayman [3], Noonan and Thomas [4], and Ehrenborg [5], have studied the Hankel determinant H k , n ( f ) and presented some remarkable results, which are useful, for example, in showing that a function of bounded characteristic in U . In particular, many results [6,7,8] are known concerning the second Hankel determinant H 2 , 1 and H 2 , 2 when f S . In many recent papers [9,10,11,12,13,14,15,16,17,18], the third Hankel determinant
H 3 , 1 ( f ) = a 3 a 5 + 2 a 2 a 3 a 4 a 3 3 a 4 2 a 2 2 a 5
has been studied, which is quite complicated. Recently, there have been many results for the subclasses of S . For starlike and convex functions the sharp bounds for the third Hankel determinant are 4 9 ([19]) and 4 135 ([20]). For the class F A of functions satisfying R e { 1 + z f ( z ) f ( z ) } > 1 2 , z U , Kowalczyk et al. [11] obtained the sharp estimate | H 3 , 1 | 1 16 . Other related work is published in [21,22,23,24].
In the paper, we study the upper bounds of the third-order Hankel determinant H 3 , 1 ( f ) for the following classes
M = f A : R e z f ( z ) f ( z ) < 3 2 ,
N = f A : R e { 1 + z f ( z ) f ( z ) } < 3 2 .
This problem was studied by Prajapat et al. [9] (see [18]).
In 1941, Ozaki [25] introduced and studied the class N . Later, Sakaguchi [26] and R. Singh and S. Singh [27] showed, respectively, that functions in N are close to convex and starlike. In 2013, Obradović [28] derived the sharp bound of | a n | 1 n ( n 1 ) in the class N . Ponnusamy [29] obtained the bounds of initial logarithmic coefficients for f N .
In 2022, Obradović and Tuneski [10] improved Bansal’s inequality for f N and showed that | H 3 , 1 ( f ) | 17 1080 . Later, Zaprawa [18] proved Obradović’s conjecture | H 3 , 1 ( f ) | 19 2160 for f N . We will significantly improve the estimate of the third Hankel determinant for the class M and N .
In this paper, we use a method based on the estimates of the coefficients of the Schwartz function. This method is different from the commonly used method, which is the main reason for the improvement in the estimate for the class mentioned above.
To obtain the main results, we will need the following, almost forgotten, result of Carleson ([30]).
Lemma 1.
Let ω = c 1 z + c 2 z 2 + c 3 z 3 + · · · be a Schwarz function. Then
c 2 1 c 1 2 , | c 3 | 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | , | c 4 | 1 | c 1 | 2 | c 2 | 2 .

2. Main Results

We begin with improvements in the upper bound of the third Hankel determinant for the class M .
Theorem 1.
Let ( x 0 , y 0 ) ( 0.458445 , 0.631054 ) be the solution of the system of equations
30 x 7 + ( 12 y 110 ) x 6 + ( 3 y 132 ) x 5 + ( 28 y 2 90 y 34 ) x 4 + ( 70 y 2 119 y + 40 ) x 3 + ( 42 y 2 27 y + 24 ) x 2 + ( 13 y 3 + 8 y 2 + 30 y + 2 ) x 8 y 4 13 y 3 + 8 y 2 + 13 y = 0 , 12 x 6 28 x 5 + ( 112 y 110 ) x 4 + ( 112 y 36 ) x 3 + ( 129 y 2 + 104 ) x 2 + ( 102 y 2 64 y + 88 ) x + 64 y 3 + 27 y 2 64 y + 18 = 0 .
If f M , then
H 3 , 1 ( f ) 1 144 [ 24 x 0 5 + ( 12 y 0 20 ) x 0 4 + ( 52 y 0 + 24 ) x 0 3 + ( 32 y 0 2 18 y 0 + 4 ) x 0 2 + ( 32 y 0 2 + 52 y 0 ) x 0 + 9 y 0 3 32 y 0 2 + 18 y 0 + 16 + 16 y 0 4 ( 1 + x 0 ) 2 52 x 0 y 0 3 1 + x 0 24 x 0 3 y 0 2 1 + x 0 ] 28.1080 144 = 0.195194 .
Proof. 
For a function f M , there exists a Schwarz function ω z , such that
z f ( z ) f ( z ) = 3 2 1 + ω ( z ) 2 ( 1 ω ( z ) ) ,
i.e.,
z f ( z ) ( 1 ω ( z ) ) = f ( z ) ( 1 2 ω ( z ) ) .
By comparing the coefficients in the above expression, we receive
a 2 = c 1 , a 3 = c 2 2 , a 4 = 2 c 3 + c 1 c 2 6 , a 5 = 2 c 1 2 c 2 + 4 c 1 c 3 + 3 c 2 2 + 6 c 4 24 .
From (2) and (3), we achieve
H 3 , 1 f = 1 144 18 c 2 c 4 16 c 3 2 + 36 c 1 2 c 4 + 12 c 1 4 c 2 4 c 1 2 c 2 2 + 27 c 2 3 + 24 c 1 3 c 3 52 c 1 c 2 c 3 .
By using triangle inequality and Lemma in (4), we come across
144 H 3 , 1 ( f ) 18 | c 2 | | c 4 | + 16 | c 3 | 2 + 36 | c 1 | 2 | c 4 | + 12 | c 1 | 4 | c 2 | + 4 | c 1 | 2 | c 2 | 2 + 27 | c 2 | 3 + 24 | c 1 | 3 | c 3 | + 52 | c 1 | | c 2 | | c 3 | 18 | c 2 | 1 | c 1 | 2 | c 2 | 2 + 16 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | 2 + 36 | c 1 | 2 1 | c 1 | 2 | c 2 | 2 + 12 | c 1 | 4 | c 2 | + 4 | c 1 | 2 | c 2 | 2 + 27 | c 2 | 3 + 24 | c 1 | 3 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | + 51 | c 1 | | c 2 | 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | = 24 | c 1 | 5 + 12 | c 2 | 20 | c 1 | 4 + 52 | c 2 | + 24 | c 1 | 3 + 32 | c 2 | 2 18 | c 2 | + 4 | c 1 | 2 + 32 | c 2 | 2 + 52 | c 2 | | c 1 | + 9 | c 2 | 3 32 | c 2 | 2 + 18 | c 2 | + 16 + 16 | c 2 | 4 ( 1 + | c 1 | ) 2 52 | c 1 | | c 2 | 3 1 + | c 1 | 24 | c 1 | 3 | c 2 | 2 1 + | c 1 | .
By putting x = | c 1 | and y = | c 2 | in above expression, we obtain
144 | H 3 , 1 ( f ) | 24 x 5 + ( 12 y 20 ) x 4 + ( 52 y + 24 ) x 3 + ( 32 y 2 18 y + 4 ) x 2 + ( 32 y 2 + 52 y ) x + 9 y 3 32 y 2 + 18 y + 16 + 16 y 4 ( 1 + x ) 2 52 x y 3 1 + x 24 x 3 y 2 1 + x = F ( x , y )
We continue by finding the maximum of the function F on the region Ω = { ( x , y ) : 0 x 1 , 0 y 1 x 2 } . Differentiating F partially with respect to x and y, we obtain
F x = 120 x 4 + ( 48 y 80 ) x 3 + ( 156 y + 72 ) x 2 + ( 64 y 2 36 y + 8 ) x + 32 y 2 + 52 y 32 y 4 ( 1 + x ) 3 52 y 3 ( 1 + x ) 2 24 ( 3 x 2 + 2 x 3 ) y 2 ( 1 + x ) 2
and
F y = 12 x 4 52 x 3 + ( 64 y 18 ) x 2 + ( 64 y + 52 ) x + 27 y 2 64 y + 18 + 64 y 3 ( 1 + x ) 2 156 x y 2 1 + x 48 x 3 y 1 + x .
By putting F x = 0 , F y = 0 and simplifying, we receive
30 x 7 + ( 12 y 110 ) x 6 + ( 3 y 132 ) x 5 + ( 28 y 2 90 y 34 ) x 4 + ( 70 y 2 119 y + 40 ) x 3 + ( 42 y 2 27 y + 24 ) x 2 + ( 13 y 3 + 8 y 2 + 30 y + 2 ) x 8 y 4 13 y 3 + 8 y 2 + 13 y = 0 , 12 x 6 28 x 5 + ( 112 y 110 ) x 4 + ( 112 y 36 ) x 3 + ( 129 y 2 + 104 ) x 2 + ( 102 y 2 64 y + 88 ) x + 64 y 3 + 27 y 2 64 y + 18 = 0 .
Applying Newton’s methods to the above equations in Maple Software, we obtain
x 0 0.458445 , y 0 0.631054 , x 1 1 , y 1 0 , x 2 0.358816 , y 2 0.886184 , x 3 0.672790 , y 3 1.280037 , x 4 40.019196 , y 4 142.738372 , x 5 0.217838 , y 5 1.300191 . x 6 0.865959 , y 6 0.198154 . x 7 1.00406 , y 7 0.051781 . x 8 1.109198 , y 8 0.031831 .
Thus, in Ω , there is a critical point x 0 , y 0 0.458445 , 0.631054 satisfying y 1 x 2 , for which
F x 0 , y 0 28.1080
Therefore, we continue studying F on the edges of Ω .
For x = 0 ,
F ( 0 , y ) = 16 y 4 + 9 y 3 32 y 2 + 18 y + 16 F ( 0 , 1 ) = 27 .
For y = 0 ,
F ( x , 0 ) = 24 x 5 20 x 4 + 24 x 3 + 4 x 2 + 16 F ( 0.5759 , 0 ) 18.1903
On the edge y = 1 x 2 , F ( x , y ) becomes
F ( x , 0 ) = 9 x 6 27 x 4 + 9 x 2 + 27 F ( 9 + 6 3 3 , 0 ) = 16 3 27.7182 .
Thus, we get
| H 3 , 1 ( f ) | 28.1080 144 0.195194
We complete the proof of Theorem 1. □
Remark 1.
The estimates of the third Hankel determinant  H 3 , 1 f  of Theorem 1 are more accurate than that obtained in ([18], Theorem 1).
Theorem 2.
Let ( x 0 , y 0 ) ( 0.417110 , 0.514879 ) is the approximate root of the system of equations
60 x 7 + ( 24 y 212 ) x 6 + ( 6 y 240 ) x 5 + ( 59 y 2 150 y 52 ) x 4 + ( 145 y 2 224 y + 64 ) x 3 + ( 81 y 2 72 y + 24 ) x 2 + ( 22 y 3 + 25 y 2 + 42 y 4 ) x 20 y 4 22 y 3 + 20 y 2 + 22 y = 0 , 6 x 6 10 x 5 + ( 59 y 50 ) x 4 + ( 54 y 24 ) x 3 + ( 64 y 2 + 5 y + 44 ) x 2 + ( 62 y 2 40 y + 46 ) x + 40 y 3 + 2 y 2 40 y + 12 = 0 .
If f N , then
H 3 , 1 ( f ) 1 8640 [ 72 x 0 5 + ( 36 y 0 48 ) x 0 4 + ( 132 y 0 + 72 ) x 0 3 + ( 105 y 0 2 72 y 0 12 ) x 0 2 + ( 120 y 0 2 + 132 y 0 ) x 0 + 4 y 0 3 120 y 0 2 + 72 y 0 + 60 + 60 y 0 4 ( 1 + x 0 ) 2 132 x 0 y 0 3 1 + x 0 72 x 0 3 y 0 2 1 + x 0 ] 88.353 8640 = 0.01202 .
Proof. 
Assume that f N . From the definition, we know there is a Schwarz function ω such that
1 + z f ( z ) f ( z ) = 3 2 1 + ω ( z ) 2 ( 1 ω ( z ) ) ,
i.e.,
( z f ( z ) ) ( 1 ω ( z ) ) = f ( z ) ( 1 2 ω ( z ) ) .
Using some easy computation, comparing the coefficients in the above expression, we receive
a 2 = c 1 2 , a 3 = c 2 6 , a 4 = 2 c 3 + c 1 c 2 24 , a 5 = 2 c 1 2 c 2 + 4 c 1 c 3 + 3 c 2 2 + 6 c 4 120 .
From (2) and (5), we achieve
H 3 , 1 f = 1 8640 36 c 1 4 c 2 + 72 c 1 3 c 3 132 c 1 c 2 c 3 + 3 c 1 2 c 2 2 + 108 c 1 2 c 4 + 76 c 2 3 60 c 3 2 + 72 c 2 c 4 .
Applying the triangle inequality and Lemma in (6), we obtain
8640 H 3 , 1 ( f ) 36 | c 1 | 4 | c 2 | + 72 | c 1 | 3 | c 3 | + 132 | c 1 | | c 2 | | c 3 | + 3 | c 1 | 2 | c 2 | 2 + 108 | c 1 | 2 | c 4 | + 76 | c 2 | 3 + 60 | c 3 | 2 + 72 | c 2 | | c 4 | 36 | c 1 | 4 | c 2 | + 72 | c 1 | 3 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | + 132 | c 1 | | c 2 | 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | + 3 | c 1 | 2 | c 2 | 2 + 108 | c 1 | 2 ( 1 | c 1 | 2 | c 2 | 2 ) + 76 | c 2 | 3 + 60 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | 2 + 72 | c 2 | 1 | c 1 | 2 | c 2 | 2 = 72 | c 1 | 5 + 36 | c 2 | 48 | c 1 | 4 + 132 | c 2 | + 72 | c 1 | 3 + 105 | c 2 | 2 72 | c 2 | 12 | c 1 | 2 + 120 | c 2 | 2 + 132 | c 2 | | c 1 | + 4 | c 2 | 3 120 | c 2 | 2 + 72 | c 2 | + 60 + 60 | c 2 | 4 ( 1 + | c 1 | ) 2 132 | c 1 | | c 2 | 3 1 + | c 1 | 72 | c 1 | 3 | c 2 | 2 1 + | c 1 | .
Putting | c 1 | = x and | c 2 | = y in above expression, we come across
9640 H 3 , 1 f 72 x 5 + ( 36 y 48 ) x 4 + ( 132 y + 72 ) x 3 + ( 105 y 2 72 y 12 ) x 2 + ( 120 y 2 + 132 y ) x + 4 y 3 120 y 2 + 72 y + 60 + 60 y 4 ( 1 + x ) 2 132 x y 3 1 + x 72 x 3 y 2 1 + x = Υ ( x , y )
where x [ 0 , 1 ] and y [ 0 , 1 x 2 ] .
In order to caculate the maximum of the function Υ on the region Ω = { ( x , y ) : 0 x 1 , 0 y 1 x 2 } , we take the partial derivative with respect to x and y, respectively, and we receive
Υ x = 360 x 4 + ( 144 y 192 ) x 3 + ( 396 y + 216 ) x 2 + ( 210 y 2 144 y 24 ) x + 120 y 2 + 132 y 120 y 4 ( 1 + x ) 3 132 y 3 ( 1 + x ) 2 72 ( 3 x 2 + 2 x 3 ) y 2 ( 1 + x ) 2
and
Υ y = 36 x 4 132 x 3 + ( 210 y 72 ) x 2 + ( 240 y + 132 ) x + 12 y 2 240 y + 72 + 240 y 3 ( 1 + x ) 2 396 x y 2 1 + x 144 x 3 y 1 + x .
By putting Υ x = 0 , Υ y = 0 and simplifying, we come across
60 x 7 + ( 24 y 212 ) x 6 + ( 6 y 240 ) x 5 + ( 59 y 2 150 y 52 ) x 4 + ( 145 y 2 224 y + 64 ) x 3 + ( 81 y 2 72 y + 24 ) x 2 + ( 22 y 3 + 25 y 2 + 42 y 4 ) x 20 y 4 22 y 3 + 20 y 2 + 22 y = 0 , 6 x 6 10 x 5 + ( 59 y 50 ) x 4 + ( 54 y 24 ) x 3 + ( 64 y 2 + 5 y + 44 ) x 2 + ( 62 y 2 40 y + 46 ) x + 40 y 3 + 2 y 2 40 y + 12 = 0 .
By applying Newton’s methods to the above equations in Maple Software, we receive
x 0 0.417110 , y 0 0.514879 , x 1 1 , y 1 0 , x 2 0.026119 , y 2 1.150345 , x 3 0.213779 , y 3 0.991641 , x 4 0 . . 661308 , y 4 1.149135 , x 5 40.425660 , y 5 142.247907 , x 6 0.862110 , y 6 0.189623 , x 7 1.001355 , y 7 0.027737 , x 8 1.103190 , y 8 0.025415 .
Then, there is a critical point ( x 0 , y 0 ) satisfying y 1 x 2 at which Υ ( x , y ) obtains its maximum. Thus, we have
Υ ( x , y ) Υ ( x 0 , y 0 ) 88.353
Therefore, we continue studying Υ on the edges of Ω .
For x = 0 ,
Υ ( 0 , y ) = 60 y 4 + 4 y 3 120 y 2 + 72 y + 60 Υ ( 0 , 1 ) = 76 .
For y = 0 ,
Υ ( x , 0 ) = 72 x 5 48 x 4 + 72 x 3 12 x 2 + 60 Υ ( 0.4583 , 0 ) 60.8369
For y = 1 x 2 , G ( x , y ) reduce
Υ ( x , 0 ) = 25 x 6 90 x 4 + 39 x 2 + 76 Υ ( 5 5 , 0 ) = 80 .
Thus, we obtain
H 3 , 1 ( f ) 88.353 8640 = 0.01202
The proof of Theorem 2 is completed. □
Remark 2.
The bound of the third Hankel determinant  | H 3 , 1 ( f ) |  in Theorem 2 are more accurate than that in [[18], Theorem 5].

3. Conclusions

In this paper, a new method of finding the third Hankel determinant for close- to-convex functions was proposed. The bounds of the third Hankel determinant for the classes M and N , derived with the new method, are better than those obtained by Zaprawa [15].
| H 3 , 1 ( f ) | 43 144 f o r   f M ,
| H 3 , 1 ( f ) | 19 2160 f o r   f N .
The advantage of the method is the possibility of calculating the bound of these functionals when the function coefficients are real.

Author Contributions

Conceptualization, D.G. and E.A.; Methodology, D.G., H.T. and Q.X.; Software, H.T. and Z.L.; Resources, E.A.; Writing—original draft, J.Z. and Z.L.; Writing—review & editing, D.G.; Funding acquisition, Q.X. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11561001; 11271045), the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (Grant No. NJYT-18-A14), the Natural Science Foundation of Inner Mongolia of China (Grant No. 2018MS01026; 2020MS01010), the Higher School Foundation of Inner Mongolia of China (Grant No. NJZY19211) and the Natural Science Foundation of Anhui Provincial Department of Education (Grant Nos. KJ2020A0993; KJ2020ZD74), the program of Guangzhou Civil Aviation college (Grant Nos. 22x0418).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors state that they have no conflict of interest.

References

  1. Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 41, 111–122. [Google Scholar] [CrossRef]
  2. Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
  3. Hayman, W.K. On second Hankel determinant of mean univalent functions. Proc. Lond. Math. Soc. 1969, 18, 77–94. [Google Scholar] [CrossRef]
  4. Noonan, J.W.; Thomas, D.K. On the second Hankel determinant of areally mean p-valent functions. Trans. Am. Math. Soc. 1976, 223, 337–346. [Google Scholar] [CrossRef]
  5. Ehrenborg, R. The Hankel determinant of exponential polynomials. Am. Math. Mon. 2000, 107, 557–560. [Google Scholar] [CrossRef]
  6. Aouf, M.K.; Seoudy, T. Certain Class of Bi-Bazilevic Functions with Bounded Boundary Rotation Involving Salăgeăn Operator. Constr. Math. Anal. 2020, 3, 139–149. [Google Scholar] [CrossRef]
  7. Seoudy, T.; Aouf, M.K. Fekete-Szegö Problem for Certain Subclass of Analytic Functions with Complex Order Defined by q-Analogue of Ruscheweyh Operator. Constr. Math. Anal. 2020, 3, 36–44. [Google Scholar] [CrossRef]
  8. Allu, V.; Lecko, A.; Thomas, D.K. Hankel, Toeplitz, and Hermitian-Toeplitz Determinants for Certain Close-to-convex Functions. Mediterr. J. Math. 2022, 19, 22. [Google Scholar] [CrossRef]
  9. Prajapat, J.K.; Bansal, D.; Maharana, S. Bounds on third Hankel determinant for certain classes of analytic functions. Stud. Univ. Babebs-Bolyai Math. 2017, 62, 183–195. [Google Scholar] [CrossRef]
  10. Obradović, M.; Tuneski, N. Improved upper bound of third order Hankel determinant for Ozaki close-to-convex functions. J. Class. Anal. 2022, 19, 13–19. [Google Scholar] [CrossRef]
  11. Kowalczyk, B.; Lecko, A.; Thomas, D.K. The sharp bound of the third Hankel determinant for Convex functions of order -1/2. J. Math. Inequal. 2023, 17, 191–204. [Google Scholar] [CrossRef]
  12. Wang, Z.G.; Raza, M.; Arif, M.; Ahmad, K. On the Third and Fourth Hankel Determinants for a Subclass of Analytic Functions. Bull. Malays. Math. Sci. Soc. 2022, 45, 323–359. [Google Scholar] [CrossRef]
  13. Shi, L.; Arif, M. Certain Sharp Coefficient Results on a Subclass of Starlike Functions Defined by the Quotient of Analytic Functions. Fractal Fract. 2023, 7, 195. [Google Scholar] [CrossRef]
  14. Esmail, S.; Agrawal, P.; Aly, S. A novel analytical approach for advection diffusion equation for radionuclide release from an area source. Nucl. Eng. Technol. 2020, 52, 819–826. [Google Scholar] [CrossRef]
  15. Shi, L.; Khan, M.G.; Ahmad, B.; Mashwani, W.K.; Agarwal, P.; Momani, S. Certain Coefficient Estimate Problems for Three-Leaf-Type Starlike Functions. Fractal Fract. 2021, 5, 137. [Google Scholar] [CrossRef]
  16. Zaprawa, P.; Obradocić, M.; Tuneski, N. Third Hankel determinant for univalent starlike functions. Racsam 2021, 115, 49. [Google Scholar] [CrossRef]
  17. Tang, H.; Murugusundaramoorthy, G.; Li, S.; Ma, L.N. Fekete-Szegö and Hankel inequalities for certain class of analytic functions related to the sine function. AIMS Math. 2022, 7, 6365–6380. [Google Scholar] [CrossRef]
  18. Zaprawa, P.; Tra̧bka-Wiȩclaw, K. Upper Bounds of the Third Hankel Determinant for Close-to-Convex Functions. Symmetry 2022, 14, 885. [Google Scholar] [CrossRef]
  19. Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the Hankel determinant for starlike functions. Forum Math. 2022, 34, 1249–1254. [Google Scholar] [CrossRef]
  20. Kowalczyk, B.; Lecko, A.; Thoms, D.K. The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
  21. Lecko, A.; Sim, Y.J.; Śmiarowska, B. The Sharp Bound of the Hankel Determinant of the Third Kind for Starlike Functions of Order 1/2. Complex Anal. Oper. Theory 2019, 13, 2231–2238. [Google Scholar] [CrossRef]
  22. Banga, S.; Kumar, S.S. The sharp bounds of the Hankel determinants for the class SL*. Math. Slovaca 2020, 4, 849–862. [Google Scholar] [CrossRef]
  23. Raza, M.; Srivastava, H.M.; Xin, Q.; Tchier, F.; Malik, S.N.; Arif, M. Starlikeness Associated with the Van Der Pol Numbers. Mathematics 2023, 11, 2231. [Google Scholar] [CrossRef]
  24. Riaz, A.; Raza, M.; Binyamin, M.A.; Saliu, A. The second and third Hankel determinants for starlike and convex functions associated with Three-Leaf function. Heliyon 2023, 9, e12748. [Google Scholar] [CrossRef]
  25. Ozaki, S.O. On the theory of multivalent functions. II. Sci. Rep. Tokyo Bunrika Daigaku Sect. A 1941, 4, 45–87. [Google Scholar]
  26. Akaguchi, K.S. A property of convex functions and an application to criteria for univalence. Bull. Nara Univ. Ed. Nat. Sci. 1973, 22, 1–5. [Google Scholar]
  27. Singh, R.; Singh, S. Some sufficient conditions for univalence and starlikeness. Colloq. Math. 1982, 47, 309–314. [Google Scholar] [CrossRef]
  28. Obradović, M.; Ponnusamy, S.; Wirths, K.J. Coeffcient characterizations and sections for some univalent functions. Sib. Math. J. 2013, 54, 679–696. [Google Scholar] [CrossRef]
  29. Ponnusamy, S.; Sharma, N.; Wirths, K. Logarithmic coefficients problems in families related to starlike and convex functions. J. Aust. Math. Soc. 2020, 109, 230–249. [Google Scholar] [CrossRef]
  30. Carlson, F. Sur les coeffcients d’une fonction bornée dans le cercle unité. Ark. Mat. Astr. Fys. 1940, 27A, 8. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Guo, D.; Tang, H.; Zhang, J.; Li, Z.; Xu, Q.; Ao, E. Improved Upper Bounds of the Third-Order Hankel Determinant for Ozaki Close-to-Convex Functions. Symmetry 2023, 15, 1176. https://doi.org/10.3390/sym15061176

AMA Style

Guo D, Tang H, Zhang J, Li Z, Xu Q, Ao E. Improved Upper Bounds of the Third-Order Hankel Determinant for Ozaki Close-to-Convex Functions. Symmetry. 2023; 15(6):1176. https://doi.org/10.3390/sym15061176

Chicago/Turabian Style

Guo, Dong, Huo Tang, Jun Zhang, Zongtao Li, Qingbing Xu, and En Ao. 2023. "Improved Upper Bounds of the Third-Order Hankel Determinant for Ozaki Close-to-Convex Functions" Symmetry 15, no. 6: 1176. https://doi.org/10.3390/sym15061176

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop