Exploring the Symmetry of Curvilinear Regression Models for Enhancing the Analysis of Fibrates Drug Activity through Molecular Descriptors
Abstract
:1. Introduction
2. DFT Part
3. Materials and Method
Algorithm 1: Computational procedure of calculation of degree-based indices. |
Input: Edges and nodes of molecule Output: Topological indices vector Step 1. Start Step 2. Graph of undirected edges Step 3. Adjacency matrix of G Step 4. Distances of G Step 5. Vertex degree of G Step 6. Calculate size of matrix d Step 4. Construct for to number of columns do for to number of rows do if then elseif then First Zagerb index Second Zagerb index Hyper-Zagerb index Atom-Bond Connectivity index Randic index min-max rodeg index max-min rodeg index Alberston index Sigma index Inverse symmetric deg index Inverse sum deg index end if end for end for Step 5. (summation of |
Algorithm 2: Computational procedure of calculation of distance-based indices. |
Input: Edges and nodes of molecule Output: Topological indices vector Step 1. Start Step 2. Graph of undirected edges Step 3. Adjacency matrix of G Step 4. Distances of G Step 5. Vertex degree of G Step 6. Calculate size of matrix d Step 4. Construct for to number of rows do for to number of columns do Wiener index Schultz index Harary index Gutman index end for end for Step 5. summation of |
Results and Discussion
4. Conclusions
- Despite the limited number of input molecules used in our study, we have taken great care to ensure the reliability and validity of our findings. We have rigorously tested our models using appropriate statistical methods and validated their predictive performance through external testing. Furthermore, we have provided a clear and transparent description of our methodology, including the selection and preparation of our data, the choice of input features, and the modeling approach. We believe that our manuscript reflects a well-designed and carefully executed study that contributes to the field of predictive modeling.
- While we acknowledge the limitation of our small dataset, we would like to emphasize that our study is not meant to provide a definitive model for predicting molecular properties. Rather, it aims to demonstrate the feasibility and potential of using DFT calculations and topological indices as input features for predictive modeling. Our results show promising predictive performance and highlight the importance of selecting appropriate input features and modeling approaches. Our study will inspire further investigations on larger datasets and lead to the development of more robust and accurate models.
- By evaluating three distinct models, we have provided a comprehensive and nuanced analysis of the relationship between molecular structure and properties. Our models include both linear and non-linear approaches, which allowed us to capture both linear and non-linear relationships between input features and output properties. This approach is particularly important in the field of predictive modeling, where complex relationships are often present. Moreover, by comparing and contrasting the performance of different models, we were able to identify the most effective approach for our specific research question. Our study demonstrates the importance of model selection and the need for careful evaluation of different modeling approaches.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonzalez-Diaz, H.; Vilar, S.; Santana, L.; Uriarte, E. Medicinal chemistry and bioinformatics-current trends in drugs discovery with networks topological indices. Curr. Top. Med. Chem. 2007, 7, 1015–1029. [Google Scholar] [CrossRef] [PubMed]
- Estrada, E.; Uriarte, E. Recent advances on the role of topological indices in drug discovery research. Curr. Med. Chem. 2001, 8, 1573–1588. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Wang, W.; Farahani, M.R. Topological indices study of molecular structure in anticancer drugs. J. Chem. 2016, 2016, 3216327. [Google Scholar] [CrossRef]
- Gao, W.; Farahani, M.R.; Shi, L. Forgotten topological index of some drug structures. Acta Medica Mediterr. 2016, 32, 579–585. [Google Scholar]
- McCullough, P.A.; Loreto, M.J.D. Fibrates and cardiorenal outcomes. J. Am. Coll. Cardiol. 2012, 60, 2072–2073. [Google Scholar] [CrossRef] [PubMed]
- Brea, A.; Millán, J.; Ascaso, J.F.; Blasco, M.; Díaz, A.; Hernxaxndez-Mijares, A.; Mantilla, T.; Pedro-Botet, J.C.; Pintó, X. Fibrates in primary prevention of cardiovascular disease. Comments on the results of a systematic review of the Cochrane Collaboration. Clínica Investigación Arterioscler. (Engl. Ed.) 2018, 30, 188–192. [Google Scholar] [CrossRef]
- Devillers, J.; Balaban, A.T. Topological Indices and Related Descriptors in QSAR and QSPAR; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Gutman, I. A Property of the Simple Topological Index. Match Commun. Math. Comput. Chem. 1990, 25, 131–140. [Google Scholar]
- Wiener, H. Structural Determination of Paraffin Boiling Points. J. Am. Chem. 1947, 69, 17–20. [Google Scholar] [CrossRef]
- Gao, W.; Wang, Y.; Basavanagoud, B.; Jamil, M.K. Characteristics Studies of Molecular Structures in Drugs. Saudi Pharm. J. 2017, 25, 580–586. [Google Scholar] [CrossRef]
- Doslic, T.; Reti, T.; Ali, A. On the Structure of Graphs with Integer Sombor Indices. Discret. Lett. 2021, 7, 1–4. [Google Scholar]
- Gutman, I. Geometric Approach to Degree-Based Topological Indices: Sombor Indices. Match Communications Math. Comput. Chem. 2021, 86, 11–16. [Google Scholar]
- Ediz, S.; Çiftçi, İ.; Cancan, M.; Farahani, M.R. On k-total distance degrees and k-total Wiener polarity index. J. Inf. Optim. Sci. 2021, 42, 1469–1477. [Google Scholar] [CrossRef]
- Matejić, M.; Zogić, E.; Milovanović, E.; Milovanović, I. A Note on the Laplacian Resolvent Energy of Graphs. Asian-Eur. J. Math. 2020, 13, 2050119. [Google Scholar] [CrossRef]
- Gutman, I.; Trinajst ıC, N. Graph Theory and Molecular Orbitals. Total p-Electron Energy of Alternant Hydrocarbons. Chem. Phys. Lett. 1972, 17, 535–538. [Google Scholar] [CrossRef]
- Randić, M. On Characterization of Molecular Branching. J. Am. Chem. 1975, 97, 6609–6615. [Google Scholar] [CrossRef]
- Estrada, E. Characterization of 3D Molecular Structure. Chem. Phys. Lett. 2000, 319, 713–718. [Google Scholar] [CrossRef]
- Hosoya, H. Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons. Bull. Chem. Soc. Jpn. 1971, 44, 2332–2339. [Google Scholar] [CrossRef]
- Estrada, E.; Bonchev, D. Chemical Graph Theory; Chapman and Hall/CRC: New York, NY, USA, 2013. [Google Scholar]
- Gutman, I.; Ruscic, B.; Trinajstic, N.; Wilson, C.F., Jr. Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Chem. Phys. 1975, 62, 3399–3405. [Google Scholar] [CrossRef]
- Shirdel, G.H.; Rezapour, H.; Sayadi, A.M. The hyper Zagreb index of graph operations. Iran. J. Math. Chem. 2013, 4, 213–220. [Google Scholar]
- Togan, M.; Yurttas, A.; Cevik, A.S.; Cangul, I.N. Effect of edge deletion and addition on Zagreb indices of graphs. In Mathematical Methods in Engineering; Springer: Cham, Switzerland, 2019; pp. 191–201. [Google Scholar]
- Togan, M.; Yurttas, A.; Çevik, A.S.; Cangul, I.N. Zagreb indices and multiplicative Zagreb indices of double graphs of subdivision graphs. Twms J. Appl. Eng. Math. 2019, 9, 404–412. [Google Scholar]
- Gutman, I.; Togan, M.; Yurttas, A.; Cevik, A.S.; Cangul, I.N. Inverpe problem fsr sigma index. Match Commun. Math. Comput. Chem. 2018, 79, 491–508. [Google Scholar]
- Ghorbani, M.; Zangi, S.; Amraei, N. New results on symmetric division deg index. J. Appl. Math. Comput. 2021, 65, 161–176. [Google Scholar] [CrossRef]
- Richardson, C.W.; Foster, G.R.; Wright, D.A. Estimation of erosion index from daily rainfall amount. Trans. Asae 1983, 26, 153–156. [Google Scholar] [CrossRef]
- Das, K.C.; Gutman, I.; Furtula, B. On atom-bond connectivity index. Chem. Phys. Lett. 2011, 511, 452–454. [Google Scholar] [CrossRef]
- Dalfó, C. On the Randić index of graphs. Discret. Math. 2019, 342, 2792–2796. [Google Scholar] [CrossRef]
- Jahanbani, A. Albertson energy and Albertson Estrada index of graphs. J. Linear Topol. Algebra 2019, 8, 11–24. [Google Scholar]
- Klavžar, S.; Rajapakse, A.; Gutman, I. The Szeged and the Wiener index of graphs. Appl. Math. Lett. 1996, 9, 45–49. [Google Scholar] [CrossRef]
- Xu, K.; Das, K.C. On Harary index of graphs. Discret. Appl. Math. 2011, 159, 1631–1640. [Google Scholar] [CrossRef]
- Mukwembi, S. On the upper bound of Gutman index of graphs. Match-Commun. Math. Comput. Chem. 2012, 68, 343. [Google Scholar]
- Havare, O.Ç. Topological indices and QSPR modeling of some novel drugs used in the cancer treatment. Int. J. Quantum Chem. 2021, 121, e26813. [Google Scholar] [CrossRef]
- Vukicevic, D. Boad additime modeling 2. Mathematicpl properties mf max-mrn rodig index. Crica Chem. Actata 2010, 83, 261–273. [Google Scholar]
- Estrada, E.; Torres, L.; Rodrıguez, L.; Gutman, I. An atombond connectivity index: Modelling the enthalpy of formation of alkanes. Indian J. Chem. 1998, 37, 849–855. [Google Scholar]
- Rajasekharaiah, G.V.; Murthy, U.P. Hyper-Zagreb indices of graphs and its applications. J. Algebra Comb. Discret. Struct. Appl. 2020, 8, 9–22. [Google Scholar] [CrossRef]
- Vukiccevi, D.; Gasparov, M. Bond additive modeling 1. Adriatic indices. Crica Chem. Actata 2010, 83, 243–260. [Google Scholar]
- Çolakŏglu Havare, Ö. Determination of some thermodynamic properties of monocarboxylic acids using multiple linear regression. Beu J. Sci. 2019, 8, 466–471. [Google Scholar] [CrossRef]
- Lokesha, V.; Shruti, R.; sinan Cevik, A. On certain topological indices of Nanostructures using Q(G) and R(G) operators. Commun. Fac. Sci. Univ. Ank. Ser. Math. Stat. 2018, 67, 178–187. [Google Scholar]
- Reti, T.; Sharafdini, R.; Drégelyi-Kiss, A.; Haghbin, H. Graph irregularity indices used as molecular descriptors in QSPR studies. Match Commun. Math. Comput. Chem. 2018, 79, 509–524. [Google Scholar]
- Wiener, H. Relation of the physical properties of the isomeric alkanes to molecular structure Surface tension, specific dispersion, and critical solution temperature in aniline. J. Phys. 2018, 52, 1082–1089. [Google Scholar] [CrossRef]
- Dobrynin, A.A.; Entringer, R.; Gutman, I. Wiener index of trees: Theory and applications. Acta Appl. Math. 2001, 66, 211–249. [Google Scholar] [CrossRef]
- Castro, E.A.; Tueros, M. QSPR Study of boiling points of alkyl alcohols via improved polynomial relationships. Philipp. J. Sci. 2001, 130, 111–118. [Google Scholar]
- Delen, S.; Khan, R.H.; Kamran, M.; Salamat, N.; Baig, A.Q.; Naci Cangul, I.; Pandit, M.K. Ve-Degree, Ev-Degree, and Degree-Based Topological Indices of Fenofibrate. J. Math. 2022, 2022, 4477808. [Google Scholar] [CrossRef]
- Berinde, Z.M. QSPR Models for the Molar Refraction, Polarizability and Refractive Index of Aliphatic Carboxylic Acids Using the ZEP Topological Index. Symmetry 2021, 13, 2359. [Google Scholar] [CrossRef]
- Zuo, J.; Hu, L. QSPR modeling of the melting points of organic compounds using molecular topology and quantum chemical descriptors. Symmetry 2020, 12, 1104. [Google Scholar]
- Zhang, Y.; Li, H.; Liu, Y.; Zhou, P. QSPR models for predicting melting points of organic compounds based on molecular topology. Symmetry 2019, 11, 25. [Google Scholar] [CrossRef]
- Naghipour, S.; Kiasat, A.R. Application of topological indices in QSPR modeling of C60 derivatives’ fullerene-like behavior. Symmetry 2019, 11, 368. [Google Scholar]
- Wang, J.; Xu, L. QSPR models for predicting the boiling points of alkyl alkanes based on the novel vertex degree valence topological index. Symmetry 2018, 10, 282. [Google Scholar]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J. Gaussian 09 Programmer’s Reference; Gaussian: Wallingford, CT, USA, 2009; 25p. [Google Scholar]
- Dennington, R.; Keith, T.; Millam, J. GaussView Version 5; Semichem Inc.: Shawnee Mission, KS, USA, 2009. [Google Scholar]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics 2008, 4, 17. [Google Scholar] [CrossRef]
- O’boyle, N.M.; Tenderholt, A.L.; Langner, K.M. Cclib: A library for package-independent computational chemistry algorithms. J. Comput. Chem. 2008, 29, 839–845. [Google Scholar] [CrossRef]
Vertex-Degree-Based Topological Indices | Mathematical Expression |
---|---|
First Zagreb index | |
Second Zagreb index | |
Hyper-Zagreb index | |
Atom-bond connectivity index | |
Randić index | |
Max-min rodeg index | |
Min-max rodeg index | |
Albertson index | |
Sigma index | |
Inverse symmetric deg index | |
Inverse sum indeg index | |
Distance-Based Topological Indices | Mathematical Expression |
Wiener index | |
Schultz index | |
Harary index | |
Gutman index |
Topological Index | Fenofibrate | Ciprofibrate | Bezafibrate | Clofibrate |
---|---|---|---|---|
126 | 98 | 124 | 76 | |
143 | 115 | 139 | 84 | |
626 | 520 | 606 | 374 | |
30 | 28 | 28 | 20 | |
54 | 60 | 50 | 38 | |
1716 | 660 | 1882 | 468 | |
6872 | 2652 | 7600 | 1776 | |
6846 | 2638 | 7650 | 1670 |
Physicochemical Properties | Fenofibrate | Ciprofibrate | Bezafibrate | Clofibrate |
---|---|---|---|---|
458 | 333 | 452 | 232 | |
T.I. | C | |||
---|---|---|---|---|
− | ||||
T.I. | P | S | C | ||||||
---|---|---|---|---|---|---|---|---|---|
H | |||||||||
R | |||||||||
T.I. | P | C | S | |||||
---|---|---|---|---|---|---|---|---|
H | ||||||||
R | ||||||||
P.P. | ||||
---|---|---|---|---|
P | ||||
S | , | |||
C | ||||
Linear Regression Model | F | ||||
---|---|---|---|---|---|
1 | |||||
Quadratic Regression Model | F | ||||
---|---|---|---|---|---|
Cubic Regression Model | F | ||||
---|---|---|---|---|---|
F | |||||
---|---|---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wazzan, S.; Urlu Ozalan, N. Exploring the Symmetry of Curvilinear Regression Models for Enhancing the Analysis of Fibrates Drug Activity through Molecular Descriptors. Symmetry 2023, 15, 1160. https://doi.org/10.3390/sym15061160
Wazzan S, Urlu Ozalan N. Exploring the Symmetry of Curvilinear Regression Models for Enhancing the Analysis of Fibrates Drug Activity through Molecular Descriptors. Symmetry. 2023; 15(6):1160. https://doi.org/10.3390/sym15061160
Chicago/Turabian StyleWazzan, Suha, and Nurten Urlu Ozalan. 2023. "Exploring the Symmetry of Curvilinear Regression Models for Enhancing the Analysis of Fibrates Drug Activity through Molecular Descriptors" Symmetry 15, no. 6: 1160. https://doi.org/10.3390/sym15061160
APA StyleWazzan, S., & Urlu Ozalan, N. (2023). Exploring the Symmetry of Curvilinear Regression Models for Enhancing the Analysis of Fibrates Drug Activity through Molecular Descriptors. Symmetry, 15(6), 1160. https://doi.org/10.3390/sym15061160