On Several Results Associated with the Apéry-like Series
Abstract
1. Introduction
2. Main Results
3. Results (43)–(146) in Terms of the Generalized Hypergeometric Functions
4. Concluding Remark
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bailey, W.N. Generalized Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1935. [Google Scholar]
- NIST Handbook of Mathematical Functions; Olver, F.W., Lozier, D.W., Boisvert, R.v.F., Clark, C.W., Eds.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Rainville, E.D. Special Functions; Macmillan Company: New York, NY, USA, 1960. [Google Scholar]
- Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK, 1960. [Google Scholar]
- Koshy, T. Catalan Numbers with Applications; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Riordan, J. Combinatorial Identities; Wiley: Hoboken, NJ, USA, 1968. [Google Scholar]
- Gould, H.W. Combinatorial Identities, Published by the Author, Revised edition. 1972.
- Lehmer, D.H. Interesting series involving the central binomial coefficient. Am. Math. Mon. 1985, 92, 449–457. [Google Scholar] [CrossRef]
- Leshchiner, D. Some New Identities for ζ (k). J. Number Theory 1981, 13, 355–362. [Google Scholar] [CrossRef]
- Mansour, T. Combinatorial identities and inverse binomial coefficients. Adv. Appl. Math. 2002, 28, 196–202. [Google Scholar] [CrossRef]
- Pla, J. The Sum of Inverses of Binomial Coefficients Revisited. Fibonacci Q. 1997, 35, 342–345. [Google Scholar]
- Sprugnoli, R. Riordan arrays and combinatorial sums. Discret. Math. 1994, 132, 267–290. [Google Scholar] [CrossRef]
- Sprugnoli, R. Sums of Reciprocals of the Central Binomial coefficients. Integers Electron. J. Combin. Number Theory 2006, 6, A27. [Google Scholar]
- Sury, B. Sum of the Reciprocals of the Binomial Coefficients. Eur. J. Comb. 1993, 14, 351–353. [Google Scholar] [CrossRef]
- Sury, B.; Wang, T.; Zhao, F.Z. Identities Involving Reciprocals of Binomial coefficients. J. Integer Seq. 2004, 7, 1–12. [Google Scholar]
- Trif, T. Combinatorial Sums and Series Involving Inverses of Binomial Coefficients. Fibonacci Q. 2000, 38, 79–84. [Google Scholar]
- Wheelon, A.D. On the Summation of Infinite Series in Closed Form. J. Appl. Phys. 1954, 25, 113–118. [Google Scholar] [CrossRef]
- Zhao, F.Z.; Wang, T. Some Results for Sums of the Inverses of Binomial Coefficients. Integers 2005, 5, A22. [Google Scholar]
- Kumar, B.R.; Kılıçman, A.; Rathie, A.K. Applications of Lehmer’s Infinite Series Involving Reciprocals of the Central Binomial Coefficients. J. Funct. Spaces 2022, 2022, 1408543. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, W. The Series of Reciprocals of Non-Central Binomial Coefficients. Am. J. Comput. Math. 2013, 3, 31–37. [Google Scholar] [CrossRef]
- Cristea, V.G. A New Asymptotic Series and Estimates Related to Euler Mascheroni Constant. Constr. Math. Anal. 2020, 3, 1–8. [Google Scholar] [CrossRef]
- Apéry, R. Irrationalité de ζ (2) et ζ (3). J. Arith. Luminy 1979, 61, 11–13. [Google Scholar]
- Van der Poorten, A. Some wonderful formulae... Footnotes to Apéry’s proof of the irrationality of ζ(3), Séminaire Delange-Pisot-Poitou. Théorie Nombres 1978–1979, 20, 1–7. [Google Scholar]
- Borwein, J.; Broadhurst, D.; Kamnitzer, J. Central Binomial Sums and Multiple Clausen Values (with Connections to Zeta Values). Exp. Math. 2001, 10, 25–34. [Google Scholar] [CrossRef]
- Berndt, B.C.; Joshi, P.T. Chapter 9 of Ramanujan’s Second Notebook, Volume 23 of Contemporary Mathematics; American Mathematical Society: Providence, RI, USA, 1983. [Google Scholar]
- Zucker, I.J. On the series ∑k=1∞(k2k)−1k−n and related sums. J. Number Theory 1985, 20, 92–102. [Google Scholar] [CrossRef]
- Sherman, T. Summation of Glaisher and Apéry-like Series. 2000. Available online: https://www.researchgate.net/publication/228757956_Summation_of_Glaisher_and_Apery-like_series (accessed on 1 April 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayarama, P.; Lim, D.; Rathie, A.K. On Several Results Associated with the Apéry-like Series. Symmetry 2023, 15, 1022. https://doi.org/10.3390/sym15051022
Jayarama P, Lim D, Rathie AK. On Several Results Associated with the Apéry-like Series. Symmetry. 2023; 15(5):1022. https://doi.org/10.3390/sym15051022
Chicago/Turabian StyleJayarama, Prathima, Dongkyu Lim, and Arjun K. Rathie. 2023. "On Several Results Associated with the Apéry-like Series" Symmetry 15, no. 5: 1022. https://doi.org/10.3390/sym15051022
APA StyleJayarama, P., Lim, D., & Rathie, A. K. (2023). On Several Results Associated with the Apéry-like Series. Symmetry, 15(5), 1022. https://doi.org/10.3390/sym15051022

