On Some Bounds for the Gamma Function
Abstract
1. Introduction
2. Main Results
3. Comparison between Previous and New Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Batir, N. Very accurate approximations for the factorial function. J. Math. Inequal. 2010, 4, 335–344. [Google Scholar] [CrossRef][Green Version]
- Gosper, R.W. Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad. Sci. USA 1978, 75, 40–42. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mortici, C. On Gospers formula for the Gamma function. J. Math. Inequal. 2011, 5, 611–614. [Google Scholar] [CrossRef][Green Version]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed.; Nation Bureau of Standards, Applied Mathematical Series; Dover Publications: New York, NY, USA; Washington, DC, USA, 1972; Volume 55. [Google Scholar]
- Burnside, W. A rapidly convergent series for logN! Messenger Math. 1917, 46, 157–159. [Google Scholar]
- Andrews, G.E.; Berndt, B.C. Ramanujan’s Lost Notebook: Part IV; Springer Science+ Business Media: New York, NY, USA, 2013. [Google Scholar]
- Chen, C.-P.; Elezović, N.; Vukšić, L. Asymptotic formulae associated with the Wallis power function and digamma function. J. Class. Anal. 2013, 2, 151–166. [Google Scholar] [CrossRef][Green Version]
- Berndt, B.C.; Choi, Y.-S.; Kang, S.-Y. The problems submitted by Ramanujan. J. Indian Math. Soc., Contemp. Math. 1999, 236, 15–56. [Google Scholar]
- Karatsuba, E.A. On the asymptotic representation of the Euler Gamma function by Ramanujan. J. Comput. Appl. Math. 2001, 135, 225–240. [Google Scholar] [CrossRef][Green Version]
- Mortici, C. On Ramanujan’s large argument formula for the Gamma function. Ramanujan J. 2011, 26, 185–192. [Google Scholar] [CrossRef]
- Ramanujan, S. The Lost Notebook and Other Unpublished Papers; Narosa Publ. H.-Springer: New Delhi, India; Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Mortici, C. Improved asymptotic formulas for the Gamma function. Comput. Math. Appl. 2011, 61, 3364–3369. [Google Scholar] [CrossRef][Green Version]
- Programmable Calcualtors. Available online: http://www.rskey.org/CMS/the-library/11 (accessed on 20 April 2020).
- Smith, W.D. The Gamma Function Revisited. 2006. Available online: http://schule.bayernport.com/gamma/gamma05.pdf (accessed on 20 April 2020).
- Alzer, H. Sharp upper and lower bounds for the Gamma function. Proc. R. Soc. Edinb. 2009, 139A, 709–718. [Google Scholar] [CrossRef]
- Nemes, G. New asymptotic expansion for the Gamma function. Arch. Math. 2010, 95, 161–169. [Google Scholar] [CrossRef]
- Lu, D.; Song, L.; Ma, C. A generated approximation of the Gamma function related to Windschitl’s formula. J. Number Theory 2014, 140, 215–225. [Google Scholar] [CrossRef]
- Mahmoud, M.; Almuashi, H. On Some Asymptotic Expansions for the Gamma Function. Symmetry 2022, 14, 2459. [Google Scholar] [CrossRef]
- Chen, C.-P. Asymptotic expansions of the Gamma function related to Windschitl’s formula. Appl. Math. Comput. 2014, 245, 174–180. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Tian, J.-F. An accurate approximation formula for Gamma function. J. Inequal. Appl. 2018, 2018, 56. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yang, Z.-H.; Tian, J.-F. Two asymptotic expansions for Gamma function developed by Windschitl’s formula. Open Math. 2018, 16, 1048–1060. [Google Scholar] [CrossRef][Green Version]
- Yang, Z.-H.; Tian, J.-F. A family of Windschitl type approximations for Gamma function. J. Math. Inequal. 2018, 12, 889–899. [Google Scholar] [CrossRef][Green Version]
- Yang, Z.-H.; Tian, J.-F. Windschitl type approximation formulas for the Gamma function. J. Inequal. Appl. 2018, 2018, 272. [Google Scholar] [CrossRef] [PubMed][Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, M.; Alsulami, S.M.; Almarashi, S. On Some Bounds for the Gamma Function. Symmetry 2023, 15, 937. https://doi.org/10.3390/sym15040937
Mahmoud M, Alsulami SM, Almarashi S. On Some Bounds for the Gamma Function. Symmetry. 2023; 15(4):937. https://doi.org/10.3390/sym15040937
Chicago/Turabian StyleMahmoud, Mansour, Saud M. Alsulami, and Safiah Almarashi. 2023. "On Some Bounds for the Gamma Function" Symmetry 15, no. 4: 937. https://doi.org/10.3390/sym15040937
APA StyleMahmoud, M., Alsulami, S. M., & Almarashi, S. (2023). On Some Bounds for the Gamma Function. Symmetry, 15(4), 937. https://doi.org/10.3390/sym15040937