Double Sawi Transform: Theory and Applications to Boundary Values Problems
Abstract
:1. Introduction
2. Definition and Properties of the Double Sawi Transform
2.1. Relationship between the Double Laplace and the Double Sawi Transform
2.2. Convolution Property of the DS Transform
- (Commutative);
- (Associative);
- (Distributive);
- (Identity), where denotes the dirac delta function.
2.3. Double Sawi Transform for Some Functions
- (1)
- .Proof.As , then□
- (2)
- Proof.SincethenThus,□
- (3)
- Proof.AsthenTherefore,□
- (4)
- Proof.Thus,□
- (5)
- Proof.ConsiderSo, we have□
- (6)
- .Proof.ConsiderHence,□
3. Applications to Some Boundary Value Problems
4. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
S. NO | Double Sawi Transform | Double Sawi Transform | ||
---|---|---|---|---|
1 | 1 | t | ||
2 | 1 | x | ||
3 | ||||
4 | ||||
5 | ||||
6 | ||||
7 | ||||
8 | ||||
9 | ||||
10 | ||||
11 | ||||
12 |
References
- Debnath, L.; Bhatta, D. Integral Transforms and Their Applications, 3rd ed.; CRC Press; Chapman & Hall: Boca Raton, FL, USA, 2015. [Google Scholar]
- Schiff, J.L. The Laplace Transforms; Springer: New York, NY, USA, 1999. [Google Scholar]
- Aggarwal, S.; Gupta, A.R.; Singh, D.P.; Asthana, N.; Kumar, N. Application of Laplace transform for solving population growth and decay problems. Int. J. Latest Technol. Eng. Manag. Appl. Sci. 2018, 7, 141–145. [Google Scholar]
- Sneddon, I.N. Fourier Transforms; Mc Graw Hill: New York, NY, USA, 1951. [Google Scholar]
- Aggarwal, S.; Pandey, M.; Asthana, N.; Singh, D.P.; Kumar, A. Application of Mahgoub transform for solving population growth and decay problems. J. Comput. Math. Sci. 2018, 9, 1490–1496. [Google Scholar] [CrossRef]
- Aggarwal, S.; Asthana, N.; Singh, D.P. Solution of population growth and decay problems by using Aboodh transform method. Int. J. Res. Advent. Technol. 2018, 6, 2706–2710. [Google Scholar]
- Aggarwal, S.; Singh, D.P.; Asthana, N.; Gupta, A.R. Application of Elzaki transform for solving population growth and decay problems. J. Emerg. Technol. Innov. Res. 2018, 5, 281–284. [Google Scholar]
- Gupta, A.R. Solution of Abel’s integral equation using Mahgoub transform method. J. Emerg. Technol. Innov. Res. 2019, 6, 252–260. [Google Scholar]
- Aggarwal, S.; Chauhan, R. A comparative study of Mohand and Aboodh transforms. Int. J. Res. Advent. Technol. 2019, 7, 520–529. [Google Scholar] [CrossRef]
- Aggarwal, S.; Sharma, S.D. A comparative study of Mohand and Sumudu transforms. J. Emerg. Technol. Innov. Res. 2019, 6, 145–153. [Google Scholar]
- Aggarwal, S. A comparative study of Mohand and Mahgoub transforms. J. Adv. Res. Appl. Math. Statist. 2019, 4, 1–7. [Google Scholar]
- Abdelrahim Mahgoub, M.M. The new integral transform Sawi transform. Adv. Theor. Appl. Math. 2019, 14, 81–87. [Google Scholar]
- Singh, G.P.; Aggarwal, S. Sawi transform for population growth and decay problems. Int. J. Latest Technol. Eng. Manag. Appl. Sci. 2019, 8, 157–162. [Google Scholar]
- Aggarwal, S.; Gupta, A.R. Dualities between some useful integral transforms and Sawi transform. Int. J. Recent. Technol. Eng. 2019, 8, 5978–5982. [Google Scholar] [CrossRef]
- Higazy, M.; Aggarwal, S. Sawi transformation for system of ordinary differential equations with application. Ain Shams Eng. J. 2021, 12, 3173–3182. [Google Scholar] [CrossRef]
- Debnath, L. The double Laplace transforms and their properties with appplications to functional, integral and partial differential equations. Int. J. Appl. Comput. Math. 2015, 2, 1–19. [Google Scholar]
- Patil, D.P. Dualities Between Double Integral Transforms. Int. Adv. Res. J. Sci. Eng. Technol. 2020, 7, 57–64. [Google Scholar]
- Khan, A.; Ali, A.; Ahmad, S.; Saifullah, S.; Nonlaopon, K.; Akgül, A. Nonlinear Schrödinger equation under non-singular fractional operators: A computational study. Result Phys. 2022, 43, 106062. [Google Scholar] [CrossRef]
- Ali, S.; Ullah, A.; Ahmad, S.; Nonlaopon, K.; Akgül, A. Analysis of Kink Behaviour of KdV-mKdV Equation under Caputo Fractional Operator with Non-Singular Kernel. Symmetry 2022, 14, 2316. [Google Scholar] [CrossRef]
- Jiang, X.; Li, J.; Li, B.; Yin, W.; Sun, L.; Chen, X. Bifurcation, chaos, and circuit realisation of a new four-dimensional memristor system. Int. J. Nonlinear Sci. Numer. Simul. 2022. [Google Scholar] [CrossRef]
- Li, B.; Eskandari, Z.; Avazzadeh, Z. Strong resonance bifurcations for a discrete-time prey-predator model. J. Appl. Math. Comput. 2023. [Google Scholar] [CrossRef]
- Li, B.; Eskandari, Z.; Avazzadeh, Z. Dynamical Behaviors of an SIR Epidemic Model with Discrete Time. Fractal Fract. 2022, 6, 659. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, W.; Aouiti, C.; Liu, Z.; Yao, L. Bifurcation insight for a fractional-order stage-structured predator- prey system incorporating mixed time delays. Math. Methods Appl. Sci. 2023. [Google Scholar] [CrossRef]
- Xu, C.; Mu, D.; Liu, Z.; Pang, Y.; Liao, M.; Aouiti, C. New insight into bifurcation of fractional-order 4D neural networks incorporating two different time delays. Commun. Nonlinear Sci. Numer. Simul. 2023, 118, 107043. [Google Scholar] [CrossRef]
- Xu, C.; Liu, Z.; Li, P.; Yan, J.; Yao, L. Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks. Neural Process. Lett. 2022. [Google Scholar] [CrossRef]
- Xu, C.; Liao, M.; Li, P.; Guo, Y.; Liu, Z. Bifurcation properties for fractional order delayed BAM neural networks. Cogn. Comput. 2021, 13, 322–356. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Ullah, A.; De la Sen, M.; Ahmad, S. Double Sawi Transform: Theory and Applications to Boundary Values Problems. Symmetry 2023, 15, 921. https://doi.org/10.3390/sym15040921
Khan S, Ullah A, De la Sen M, Ahmad S. Double Sawi Transform: Theory and Applications to Boundary Values Problems. Symmetry. 2023; 15(4):921. https://doi.org/10.3390/sym15040921
Chicago/Turabian StyleKhan, Shahzeb, Aman Ullah, Manuel De la Sen, and Shabir Ahmad. 2023. "Double Sawi Transform: Theory and Applications to Boundary Values Problems" Symmetry 15, no. 4: 921. https://doi.org/10.3390/sym15040921
APA StyleKhan, S., Ullah, A., De la Sen, M., & Ahmad, S. (2023). Double Sawi Transform: Theory and Applications to Boundary Values Problems. Symmetry, 15(4), 921. https://doi.org/10.3390/sym15040921