Sweeping Surfaces Due to Conjugate Bishop Frame in 3-Dimensional Lie Group
Abstract
1. Introduction
2. Preliminaries
3. Sweeping Surfaces with Conjugate Bishop Frame
3.1. Singularity and Convexity
3.2. Developable Surfaces
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yoon, D.W.; Tuncer, Y.; Karacan, M.K. On curves of constant breadth in a 3-dimensional Lie group. Acta Math. Univ. Comen 2016, 85, 81–86. [Google Scholar]
- Yoon, D.W. Classifications of special curves in the Three-Dimensional Lie Group. Inter. J. Math. Anal. 2016, 11, 503–514. [Google Scholar]
- Okuyucu, O.Z.; Yıldız, O.G.; Tosun, M. Spinor Frenet equations in three dimensional Lie Groups. Adv. Appl. Clifford Algebr. 2016, 26, 1341–1348. [Google Scholar] [CrossRef]
- Yuzbası, Z.K.; Yoon, D.W. On constructions of surfaces using a geodesic in Lie group. J. Geom. 2019, 110, 1–10. [Google Scholar] [CrossRef]
- Cakmak, A. New type direction curves in 3-dimensional compact Lie group. Symmetry 2019, 11, 387. [Google Scholar] [CrossRef]
- Yoon, D.W.; Yüzbası, Z.K. A generalization for surfaces using a line of curvature in Lie group. Hacet. J. Math. Stat. 2001, 50, 444–452. [Google Scholar] [CrossRef]
- Nazra, S.H.; Abdel-Baky, R.A. Ruled surfaces with constant breadth in 3-dimensional Lie group. Asian-Eur. J. Math. 2022, 15, 2250205. [Google Scholar] [CrossRef]
- Nazra, S.H.; Abdel-Baky, R.A. Sweeping Surfaces in the 3-dimensional Lie Group. Symmetry 2022, 14, 698. [Google Scholar] [CrossRef]
- Carmo, M.P.D. Differential Geometry of Curves and Surfaces; Prentice Hall: Englewood Cliffs, NJ, USA, 1976. [Google Scholar]
- Pottmann, H.; Wallner, J. Computational Line Geometry; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Klok, F. Two moving coordinate frames for sweeping along a 3D trajectory. Comput. Aided Geom. Des. 1986, 3, 217–229. [Google Scholar] [CrossRef]
- Wang, W.; Joe, B. Robust computation of the rotation minimizing frame for sweeping surface modelling. Comput.-Aided Des. 1997, 29, 379–391. [Google Scholar] [CrossRef]
- Farouki, R.T.; Sakkalis, T. A complete classification of quintic space curves with rational rotation-minimizing frames. J. Symb. Comput. 2012, 47, 214–226. [Google Scholar] [CrossRef]
- Abdel-Baky, R.A. Developable Surfaces through Sweeping Surfaces. Bull. Iran. Math. Soc. 2019, 45, 4951–4963. [Google Scholar] [CrossRef]
- Aumann, G. Interpolation with developable bezier patches. Comput. Aided Geom. Des. 1991, 8, 409–420. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Wang, G.J. A new method for designing a developable surface utilizing the surface pencil through a given curve. Prog. Nat. Sci. 2008, 18, 105–110. [Google Scholar] [CrossRef]
- Li, C.Y.; Wang, R.H.; Zhu, C.G. Parametric representation of a surface pencil with a common line of curvature. Comput.-Aided Des. 2011, 43, 1110–1117. [Google Scholar] [CrossRef]
- Li, C.Y.; Wang, R.H.; Zhu, C.G. An approach for designing a developable surface through a given line of curvature. Comput.-Aided Des. 2013, 45, 621–627. [Google Scholar] [CrossRef]
- Althibany, N.M. Construction of developable surface with geodesic or line of curvature coordinates. J. New Theory 2021, 36, 75–87. [Google Scholar] [CrossRef]
- Sharief, D.; Bang, Y.C.; Azeb, A. Natural mates of Frenet curves in Euclidean 3-space. Turk. J. Math. 2018, 42, 2826–2840. [Google Scholar]
- Bekar, M.; Hathout, F.; Yusuf, Y. Singularities of rectifying developable surfaces of Legendre curves on UTS. Inter. J. Geom. 2022, 1, 20–33. [Google Scholar]
- Li, Y.; Tuncer, O.O. On (contra)pedals and (anti)orthotomics of frontals in de Sitter 2-space. Math. Meth. Appl. Sci. 2023, 1, 1–15. [Google Scholar] [CrossRef]
- Li, Y.; Erdoğdu, M.; Yavuz, A. Differential Geometric Approach of Betchow-Da Rios Soliton Equation. Hacet. J. Math. Stat. 2022, 1, 1–12. [Google Scholar] [CrossRef]
- Li, Y.; Abolarinwa, A.; Alkhaldi, A.; Ali, A. Some Inequalities of Hardy Type Related to Witten-Laplace Operator on Smooth Metric Measure Spaces. Mathematics 2022, 10, 4580. [Google Scholar] [CrossRef]
- Li, Y.; Aldossary, M.T.; Abdel-Baky, R.A. Spacelike Circular Surfaces in Minkowski 3-Space. Symmetry 2023, 15, 173. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Nazra, S.H.; Abdel-Baky, R.A. Singularities for Timelike Developable Surfaces in Minkowski 3-Space. Symmetry 2023, 15, 277. [Google Scholar] [CrossRef]
- Li, Y.; Eren, K.; Ayvacı, K.H.; Ersoy, S. The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space. AIMS Math. 2023, 8, 2226–2239. [Google Scholar] [CrossRef]
- Li, Y.; Abdel-Salam, A.A.; Saad, M.K. Primitivoids of curves in Minkowski plane. AIMS Math. 2023, 8, 2386–2406. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Jedani, A.; Abdel-Baky, R. Sweeping Surfaces Due to Conjugate Bishop Frame in 3-Dimensional Lie Group. Symmetry 2023, 15, 910. https://doi.org/10.3390/sym15040910
Al-Jedani A, Abdel-Baky R. Sweeping Surfaces Due to Conjugate Bishop Frame in 3-Dimensional Lie Group. Symmetry. 2023; 15(4):910. https://doi.org/10.3390/sym15040910
Chicago/Turabian StyleAl-Jedani, Awatif, and Rashad Abdel-Baky. 2023. "Sweeping Surfaces Due to Conjugate Bishop Frame in 3-Dimensional Lie Group" Symmetry 15, no. 4: 910. https://doi.org/10.3390/sym15040910
APA StyleAl-Jedani, A., & Abdel-Baky, R. (2023). Sweeping Surfaces Due to Conjugate Bishop Frame in 3-Dimensional Lie Group. Symmetry, 15(4), 910. https://doi.org/10.3390/sym15040910