On a Class of Analytic Functions Related to Robertson’s Formula Involving Crescent Shaped Domain and Lemniscate of Bernoulli
Abstract
1. Introduction
2. Representation and Growth Theorems
3. Initial Coefficient Bounds for the Class and
4. Differential Subordination Results Involving and
- (i)
- Q is starlike univalent in or
- (ii)
- h is convex univalent .
- (iii)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, W.C.; Minda, D. A unified treatment of some special classes of unvalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; Conference Proceedings and Lecture Notes in Analysis. International Press: Cambridge, MA, USA, 1994; Volume I, pp. 157–169. [Google Scholar]
- Robertson, M.S. On the theory of univalent functions. Ann. Math. 1936, 37, 374–408. [Google Scholar] [CrossRef]
- Khan, M.A.; Adnan; Saeed, T.; Nwaeze, E.R. A new advanced class of convex functions with related results. Axioms 2023, 12, 195. [Google Scholar] [CrossRef]
- Ma, N. Real estate economic development based on logarithmic growth function model. Appl. Math. Nonlinear Sci. 2022, in press. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Monotonicity and convexity involving generalized elliptic integral of the first kind. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2020, 114, 96. [Google Scholar] [CrossRef]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat. 1996, 19, 101–105. [Google Scholar]
- Ali, R.M.; Cho, N.E.; Ravichandran, V.; Kumar, S.S. Differential subordination for functions associated with the lemniscate of Bernoulli. Taiwan. J. Math. 2012, 16, 1017–1026. [Google Scholar] [CrossRef]
- Kumar, S.S.; Kumar, V.; Ravichandran, V.; Cho, N.E. Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli. J. Inequal. Appl. 2013, 176, 13. [Google Scholar] [CrossRef]
- Sokół, J. Coefficient Estimates in a Class of Strongly Starlike Functions. Kyungpook Math. J. 2009, 49, 349–353. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokól, J. Some properties related to a certain class of starlike functions. C. R. Acad. Sci. Paris Sr. I 2015, 353, 973–978. [Google Scholar] [CrossRef]
- Raina, R.K.; Sharma, P.; Sokól, J. Certain Classes of Analytic Functions Related to the Crescent-Shaped Regions. J. Contemp. Math. Anal. 2018, 53, 355–362. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokól, J. On coefficient estimates for certain class of starlike functions. Hacet. J. Math. Stat. 2015, 44, 1427–1433. [Google Scholar] [CrossRef]
- Kaplan, W. Close-to-convex schlicht functions. Mich. Math. J. 1952, 1, 169–185. [Google Scholar] [CrossRef]
- Robertson, M.S. Univalent functions starlike with respect to a boundary point. J. Math. Anal. Appl. 1981, 81, 327–345. [Google Scholar] [CrossRef]
- Lyzzaik, A. On a conjecture of M. S. Robertson. Proc. Amer. Math. Soc. 1984, 91, 108–110. [Google Scholar] [CrossRef]
- Styer, D. On weakly starlike multivalent functions. J. Anal. Math. 1973, 26, 217–233. [Google Scholar] [CrossRef]
- Lecko, A. On the class of functions starlike with respect to a boundary point. J. Math. Anal. Appl. 2001, 261, 649–664. [Google Scholar] [CrossRef]
- Lecko, A.; Lyzzaik, A. A note on univalent functions starlike with respect to a boundary point. J. Math. Anal. Appl. 2003, 282, 846–851. [Google Scholar] [CrossRef]
- Lecko, A. Some Methods in the Theory of Univalent Functions; Oficyna Wdawnicza Politechniki Rzeszowskiej: Rzeszów, Poland, 2005. [Google Scholar]
- Aharonov, D.; Elin, M.; Shoikhet, D. Spiral-like functions with respect to a boundary point. J. Math. Anal. Appl. 2003, 280, 17–29. [Google Scholar] [CrossRef]
- Lecko, A. δ-spirallike functions with respect to a boundary point. Rocky Mountain J. Math. 2008, 38, 979–992. [Google Scholar] [CrossRef]
- Bracci, F.; Levenshtein, M.; Reich, S.; Shoikhet, D. Growth Estimates for the Numerical Range of Holomorphic Mappings and Applications. Comp. Methods Funct. Theory 2016, 16, 457–487. [Google Scholar] [CrossRef]
- Elin, M.; Shoikhet, D. Linearization Models for Complex Dynamical Systems. Topics in Univalent Functions, Functional Equations and Semigroup Theory; Birkhäuser: Basel, Switzerland, 2010. [Google Scholar]
- Jakubowski, Z.J. On properties of the Pick function and some applications of them. Acta Univ. Purkynianae 1999, 42, 51–62. [Google Scholar]
- Todorov, P.G. On the univalent functions starlike with respect to a boundary point. Proc. Amer. Math. Soc. 1986, 974, 602–604. [Google Scholar] [CrossRef]
- Obradovič, M.; Owa, S. On some classes of close-to-convex functions and its applications. Bull. Inst. Math. Acad. Sin. 2012, 16, 123–133. [Google Scholar]
- Silverman, H.; Silvia, E.M. Subclasses of univalent functions starlike with respect to a boundary point. Houst. J. Math. 1990, 16, 289–299. [Google Scholar]
- Abdullah, A.S.; Ali, R.M.; Singh, V. On functions starlike with respect to a boundary point. Ann. Univ. Mariae Curie-Skłodowsk Sect. A 1996, 50, 7–15. [Google Scholar]
- Jakubowski, Z.J.; Włodarczyk, A. On some classes of functions of Robertson type. Ann. Univ. Mariae Curie-Skłodowska Sect. A 2005, 59, 27–42. [Google Scholar]
- Mohd, M.H.; Darus, M. Starlike function with respect to a boundary point defined by subordination. Adv. Math. Sci. J. 2012, 1, 15–21. [Google Scholar]
- Lecko, A.; Murugusundaramoorthy, G.; Sivasubramanian, S. On a class of analytic functions related to Robertson’s formula and subordination. Bol. Soc. Mat. Mex. 2021, 27, 8. [Google Scholar] [CrossRef]
- Lecko, A.; Murugusundaramoorthy, G.; Sivasubramanian, S. On a subclass of analytic functions that are starlike with respect to a boundary point Involving exponential function. J. Funct. Spaces 2022, 2022, 4812501. [Google Scholar] [CrossRef]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Amer. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Prokhorov, D.V.; Szynal, J. Inverse coefficients for (α,β)-convex functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A 1981, 35, 125–143. [Google Scholar]
- Goodman, A.W. Univalent Functions; Mariner: Tampa, FL, USA, 1983. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations. Theory and Applications; Dekker: Basel, Switzerland, 2000. [Google Scholar]
- Duren, P. Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
- Lecko, A.; Partyka, D. A revised proof of starlikeness. In International Conference “60 Years of Analytic Functions in Lublin, In Memory of our Professors and Friends, Jan G. Krzyż, Zdzisław Lewandowski and Wojciech Szapiel”; Szynal, J., Ed.; Monograph, Innovatio Press Scientific Publishing House, University of Economics and Innovation in Lublin: Lublin, Poland, 2012; pp. 85–95. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruszecki, L.; Lecko, A.; Murugusundaramoorthy, G.; Sivasubramanian, S. On a Class of Analytic Functions Related to Robertson’s Formula Involving Crescent Shaped Domain and Lemniscate of Bernoulli. Symmetry 2023, 15, 875. https://doi.org/10.3390/sym15040875
Gruszecki L, Lecko A, Murugusundaramoorthy G, Sivasubramanian S. On a Class of Analytic Functions Related to Robertson’s Formula Involving Crescent Shaped Domain and Lemniscate of Bernoulli. Symmetry. 2023; 15(4):875. https://doi.org/10.3390/sym15040875
Chicago/Turabian StyleGruszecki, Lech, Adam Lecko, Gangadharan Murugusundaramoorthy, and Srikandan Sivasubramanian. 2023. "On a Class of Analytic Functions Related to Robertson’s Formula Involving Crescent Shaped Domain and Lemniscate of Bernoulli" Symmetry 15, no. 4: 875. https://doi.org/10.3390/sym15040875
APA StyleGruszecki, L., Lecko, A., Murugusundaramoorthy, G., & Sivasubramanian, S. (2023). On a Class of Analytic Functions Related to Robertson’s Formula Involving Crescent Shaped Domain and Lemniscate of Bernoulli. Symmetry, 15(4), 875. https://doi.org/10.3390/sym15040875