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Abstract: In this paper, we introduce and study the class of analytic functions in the unit disc, which
are derived from Robertson’s analytic formula for starlike functions with respect to a boundary point
combined with a subordination involving lemniscate of Bernoulli and crescent shaped domains.
Using their symmetry property, the basic geometrical and analytical properties of the introduced
classes were proved. Early coefficients and the Fekete–Szegö functional were estimated. Results for
both classes were also obtained by applying the theory of differential subordinations.
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1. Introduction

Let us denote byH the family of all holomorphic functions defined in the open unit
disc D := {z ∈ C : |z| < 1}. Let A be the subclass of H consisting of functions h
normalized by h(0) = 0 and h′(0) = 1, i.e., of having power series

h(z) = z +
∞

∑
n=2

anzn, z ∈ D,

and let S be the subclass of A of univalent functions. A function f ∈ H is said to be
subordinate to a function g ∈ H if there is a function ω ∈ H such that ω(0) = 0, ω(D) ⊂ D
and f (z) = g(ω(z)) for every z ∈ D. We write then f ≺ g. If we assume that g is univalent,
then f ≺ g is equivalent to f (0) = g(0) and f (D) ⊂ g(D).

Let P stand for the subclass ofH of all functions p normalized by p(0) = 1 and such
that Re p(z) > 0 for z ∈ D, which is called as the Carathéodory class. Let P∗(1) be the
subclass of P of all functions φ such that φ(0) = 1, φ′(0) > 0, φ is univalent in D, and φ(D)
is a set symmetric with respect to the real axis and starlike with respect to 1. Thus, every
function φ ∈ P∗(1) is of the form

φ(z) = 1 +
∞

∑
n=1

Bnzn, z ∈ D,

with B1 > 0. The class P∗(1) is the basic general tool for defining classes of analytic
functions, first proposed by Ma and Minda [1]. For example, given φ ∈ P∗(1), let S∗(φ) be
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the class of all f ∈ A such that z f ′(z)/ f (z) ≺ φ(z) for z ∈ D. Classes defined in this way
are called starlike of the Ma and Minda type.

Two widely used subclasses of A, are the class of starlike and convex functions of
order α, where α ∈ [0, 1), introduced by Robertson [2] and given, respectively, by

S∗(α) :=
{

h ∈ A : Re
(

zh′(z)
h(z)

)
> α, z ∈ D

}
and

K(α) :=
{

h ∈ A : Re
(

1 +
zh′′(z)
h′(z)

)
> α, z ∈ D

}
.

It is well-known that S∗(α) ⊂ S and K(α) ⊂ S for every α ∈ [0, 1). It is clear that
S∗(α) = S∗(φ) with φ(z) := (1 + (1− 2α)z)/(1− z), z ∈ D. When α = 0 the classes
S∗ := S∗(0) and K := K(0) are the well-known classes of normalized starlike and convex
univalent functions, respectively. Further ideas on the convexity of real functions and
others related to them see, e.g., [3–5].

In this paper, we are interested in the following two functions:

φL(z) :=
√

1 + z, z ∈ D, φL(0) := 1,

and
φc(z) := z +

√
1 + z2, z ∈ D, φc(0) := 1.

Note that φL(D) is a domain bounded by Bernoulli lemniscate (x2 + y2)2− 2(x2− y2) = 0,
so it is a domain symmetric with respect to the real axis. This fact can be confirmed also by
a simple observation that

φL

(
eiθ
)
= φL

(
e−iθ

)
=
√

1 + e−iθ = φL
(
eiθ
)

for θ ∈ R. Clearly, Re φL(z) > 0 for z ∈ D. Observe now that φL − 1 is a starlike
function since

Re
z(φL(z)− 1)′

φL(z)− 1
= Re

z
2
√

1 + z
(√

1 + z− 1
) = Re

√
1 + z + 1

2
√

1 + z

=
1
2
+

1
2

Re

√
1

1 + z
> 0, z ∈ D.

Thus, (φL − 1)(D) is a starlike domain with respect to the origin, so φL(D) is a starlike
domain with respect to 1. Consequently, φL ∈ P∗(1). The class S∗(φL) was introduced
in [6] and further studied in [7–9].

On the other hand, φc(D) is a “crescent” domain bounded by two circular arcs Γ1 ⊂
T(1,
√

2), and Γ2 ⊂ T(−1,
√

2) with common end-points at i and −i, both arcs lying in
the closed right half-plane. In addition, the arcs Γ1 and Γ2 intersect the real axis at

√
2 + 1

and
√

2− 1, respectively, (for details see ([10] pp. 974–975) and ([11] pp. 356–357)). Here
T(w0, r0) := {w ∈ C : |w − w0| = r0} with w0 ∈ C and r0 > 0. Thus, φc(D) is a set
symmetric with respect to the real axis, which can also be confirmed by observing that

φc

(
eiθ
)
= φc

(
e−iθ

)
= e−iθ +

√
1 + e−2iθ = e−iθ + e−iθ/2

√
2 cos θ

= eiθ + eiθ/2
√

2 cos θ = φc
(
eiθ
)

for θ ∈ R. In ([11] p. 357) the authors mentioned that φc(D) is the set starlike with respect
to 1, however without the proof. Now we complete it. Note that the arc Γ2 can be parame-
terized as follows: w = w(t) = −1 +

√
2eit for t ∈ [−π/4, π/4]. Thus, w′(π/4) = −1 + i

is the vector tangent to Γ2 at w = i, and hence the tangent line l1 to Γ2 at w = i is given
by the equation l1 : v = v(s) = i + (−1 + i)s for s ∈ R. Since v(−1) = 1, it follows that
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the line segment [1, i] lies on the tangent line l1. Similarly, the line segment [1,−i] lies on
the tangent line l2 to Γ2 at w = −i. Thus, the set bounded by the circular arc Γ2 and the
segments [1, i] and [1,−i] lies in φc(D), which allows us to conclude that the set φc(D) is
starlike with respect to 1. The univalence of φc was shown in ([10] Theorem 2.1, p. 974).
Consequently, φc ∈ P∗(1). The corresponding class S∗(φc) was introduced in [12] (for
further results see [10,11]). The symmetry property of domains φL(D) and φc(D) is at the
basis of the obtained results for both classes.

We say that h ∈ H is close-to-convex if and only if there is a function Φ ∈ K such that

Re
(

h′(z)
Φ′(z)

)
> 0, z ∈ D.

The class of close-to-convex functions was introduced by Kaplan [13].
At this point, it should be noted that the concept of starlikeness of a given order has

been extensively studied by many authors, while less is known about the class of univalent
functions g in H that map the unit disc D onto domains Ω starlike with respect to a
boundary point. This important geometrical idea was introduced by Robertson [14], where
he defined the subclass G∗ ofH of functions g such that g(0) = 1, g(1) := limr→1− g(r) = 0,
g maps univalently D onto a domain starlike with respect to the origin and there exists
δ ∈ R such that Re(eiδg(z)) > 0 for z ∈ D. Let I ≡ 1 be the constant function. Robertson
conjectured that the class G∗ ∪ {I} is identical with the class G of all g ∈ H of the form.

g(z) = 1 +
∞

∑
n=1

dnzn, z ∈ D, (1)

such that

Re
(

2zg′(z)
g(z)

+
1 + z
1− z

)
> 0, z ∈ D, (2)

proving that G ⊂ G∗. Robertson’s conjecture was shown by Lyzzaik ([15] p. 109) in 1984,
who proved that G∗ ⊂ G. In ([14] Theorem 3, p. 332), Robertson proved also that if g ∈ G
and g 6= I, then g is close-to-convex and univalent in D. It should be noted that the
analytical condition (2) was known to Styer [16] much earlier.

In [17], Lecko proposed an alternative analytic characterization of starlike functions
with respect to a boundary point and proved the necessity. The sufficiency was shown by
Lecko and Lyzzaik [18] and in this way they confirmed this new analytic characterizations
(see also [19] Chapter VII). Based on Robertson’s idea, Aharanov et al. [20] introduced the
class of spiral-like functions with respect to a boundary point (see also [21–23]).

A class closely related to G is the class G(M), M > 1, whose elements are functions
g ∈ H of the form (1) such that

Re
(

2zg′(z)
g(z)

+
zP′(z; M)

P(z; M)

)
> 0, z ∈ D,

introduced by Jakubowski in [24]. Here,

P(z; M) :=
4z(√

(1− z)2 + 4z/M + 1− z
)2 , z ∈ D,

√
1 := 1,

stands for the Pick function. In [24], it was also defined the class

G(1) :=
{

g ∈ H : g(0) = 1, Re
(

2zg′(z)
g(z)

+ 1
)
> 0, z ∈ D

}
.

Todorov [25] studied a functional D 3 z 7→ f (z)/(1− z) over the class G, and obtained
a structural formula and coefficient estimates. Obradovič and Owa [26] and Silverman
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and Silvia [27] independently defined the families Gα, where α ∈ [0, 1), of all g ∈ H of the
form (1) such that

Re
(

zg′(z)
g(z)

+ (1− α)
1 + z
1− z

)
> 0, z ∈ D.

Silverman and Silvia ([27] Lemma 1, p. 296) proved that Gα ⊂ G∗ for every α ∈ [0, 1).
Clearly, G1/2 = G. Further results on the class G were obtained by Abdullah et al. [28].
In [29], Jakubowski and Włodarczyk introduced the class G(A, B) for −1 < A ≤ 1 and
−A < B ≤ 1, of all g ∈ H of the form (1) satisfying

Re
(

2zg′(z)
g(z)

+ Q(z; A, B)
)
> 0, z ∈ D,

where
Q(z; A, B) :=

1 + Az
1− Bz

, z ∈ D. (3)

By using Ma and Minda’s idea, Mohd and Darus in [30] defined the class S∗b (φ), where
φ ∈ P∗(1), of all g ∈ H of the form (1) such that

2zg′(z)
g(z)

+
1 + z
1− z

≺ φ(z), z ∈ D.

Combining the aforementioned concept from [29] with Ma and Minda’s idea in [31]
the class G(φ; A, B) was introduced and examined.

Define
PL := {p ∈ H : p ≺ φL},

and
Pc := {p ∈ H : p ≺ φc}.

The main goal of this paper is to define and investigate the following two classes
of functions.

Definition 1. Let Gc denote the class of all g ∈ H of the form (1) such that

2zg′(z)
g(z)

+
1 + z
1− z

≺ φc(z), z ∈ D. (4)

Definition 2. Let GL denote the class of all g ∈ H of the form (1) such that

2zg′(z)
g(z)

+
1 + z
1− z

≺ φL(z), z ∈ D. (5)

Remark 1. 1. In [32], the class Ge was introduced in a similar way as in Definitions 1 and 2, with
the exponential function being the dominant, i.e., φ(z) := exp(z) for z ∈ D.

2. Notice that the conditions (4) and (5) are well defined, as the function

p(z) :=
2zg′(z)

g(z)
+

1 + z
1− z

, z ∈ D, (6)

is analytic in D.

Lemma 1.
Gc ⊂ G∗, GL ⊂ G∗.

2. Representation and Growth Theorems

Let us start with some examples.
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Example 1. 1. Given a ∈ R, define

pa(z) := 1 + az, z ∈ D,

and
g(z) := (1− z) exp

( az
2

)
, z ∈ D. (7)

Then pa ≺ φc if and only if |a| ≤ 2 −
√

2 ([11] Theorem 3.2). Since g ∈ H,
g(0) = 1 and

2zg′(z)
g(z)

+
1 + z
1− z

= 1 + az = pa(z), z ∈ D,

we see that g ∈ Gc for |a| ≤ 2−
√

2.
2. Given −1 < A ≤ 1 and −A < B < 1, let

pA,B(z) :=
1 + Az
1− Bz

= Q(z; A, B), z ∈ D,

where Q is defined by (3). Observe that pA,B(D) is an open disk symmetrical with respect to the
real axis centered at (1 + AB)/(1− B2) of radius (A + B)/(1− B2). Then pA,B(D) ⊂ φc(D) if
and only if

pA,B(−1) =
1− A
1 + B

≥
√

2− 1, pA,B(1) =
1 + A
1− B

≤
√

2 + 1, (8)

so then pA,B ∈ Pc. Thus, a function g ∈ H with g(0) = 1 defined by

2zg′(z)
g(z)

+
1 + z
1− z

=
1 + Az
1− Bz

= pA,B(z), z ∈ D,

with A and B satisfying the inequalities (8), belongs to the class Gc i.e., the function (7) with a := A
in the case when B = 0, and the function

g(z) =
1− z

(1− Bz)(A+B)/2B
, z ∈ D,

in the case when B 6= 0. Particularly, pA,A ∈ Pc if and only if

A ∈
[
1−
√

2,−1 +
√

2
]

([11] p. 358). In this case, the function (8) has the form

g(z) =
1− z

1− Az
, z ∈ D,

and belongs to Gc.

The representation theorem formulated below is a useful tool to construct functions in
the class Gc.

Theorem 1. g ∈ Gc if and only if there exists p ∈ Pc such that

g(z) = (1− z) exp
(

1
2

∫ z

0

p(ζ)− 1
ζ

dζ

)
, z ∈ D. (9)

Proof. Assume that g ∈ Gc. Then a function p defined by (6) is holomorphic and satisfies
p ≺ φc, i.e., p ∈ Pc. Note that (6) can be equivalently written as

p(z)− 1
z

=
1
z

(
2zg′(z)

g(z)
+

1 + z
1− z

− 1
)
=

2g′(z)
g(z)

+
2

1− z
, z ∈ D, (10)
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which by an integration yields

log
(g(z))2

(1− z)2 =
∫ z

0

p(ζ)− 1
ζ

dζ, z ∈ D, log 1 := 0.

Hence

(g(z))2 = (1− z)2 exp
(∫ z

0

p(ζ)− 1
ζ

dζ

)
, z ∈ D,

which leads to the Formula (9).
Assume now that p ∈ Pc and a function g is defined by (9). As p(0) = 1, we see that g

is holomorphic in D. A simple computation shows that g satisfies (10), so (6). Thus, g ∈ Gc,
which completes the proof.

Define hc as a holomorphic solution of the differential equation

zh′c(z)
hc(z)

= φc(z), z ∈ D, hc(0) = 0, h′c(0) = 1,

i.e.,

hc(z) = z exp
(∫ z

0

φc(ζ)− 1
ζ

dζ

)
= z exp

(∫ z

0

ζ +
√

1 + ζ2 − 1
ζ

dζ

)
, z ∈ D.

Since ∫ z

0

ζ +
√

1 + ζ2 − 1
ζ

dζ = z +
∫ z

0

√
1 + ζ2 − 1

ζ
dζ

= z +
∫ z

0

1 + ζ2 − 1

ζ(
√

1 + ζ2 + 1)
dζ = z +

∫ z

0

ζ√
1 + ζ2 + 1

dζ

= z +
[√

1 + ζ2 − log
(

1 +
√

1 + ζ2
)]z

0

= z +
√

1 + z2 − log
(

1 +
√

1 + z2
)
− 1 + log 2

= z− 1 +
√

1 + z2 + log
2

1 +
√

1 + z2
, z ∈ D,

it follows that

hc(z) =
2z

1 +
√

1 + z2
exp

(
z− 1 +

√
1 + z2

)
, z ∈ D. (11)

Since the representation theorem for the class GL is similar to that of the class Gc we
omit the details involved.

Theorem 2. g ∈ GL if and only if there exists a function p ∈ PL such that

g(z) = (1− z) exp
(

1
2

∫ z

0

p(ζ)− 1
ζ

dζ

)
, z ∈ D.

Define hL as a holomorphic solution of the differential equation

zh′L(z)
hL(z)

= φL(z), z ∈ D, hL(0) = 0, h′L(0) = 1,

i.e.,

hL(z) = z exp
(∫ z

0

φL(ζ)− 1
ζ

dζ

)
= z exp

(∫ z

0

√
1 + ζ − 1

ζ
dζ

)
, z ∈ D.
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Since ∫ z

0

√
1 + ζ − 1

ζ
dζ =

∫ z

0

1 + ζ − 1
ζ
(√

1 + ζ + 1
)dζ

=
∫ z

0

1√
1 + ζ + 1

dζ =
[
2
√

1 + ζ − 2 log
(

1 +
√

1 + ζ
)]z

0

= 2
(√

1 + z− 1
)
+ 2 log

2
1 +
√

1 + z
, z ∈ D,

it follows that

hL(z) =
4z exp

(
2
√

1 + z− 2
)

(1 +
√

1 + z)2
, z ∈ D.

We construct examples for the class GL by the virtue of Theorem 2.

Example 2. One can easily see that the function

p(z) :=
1 + az
1 + bz

, z ∈ D,

for suitable chosen 0 ≤ b < a ≤ 1 belongs to PL. For example, we can take a = 2/3 and
b = 1/3. By Theorem 2, the function

g(z) := (1− z)
√

1 +
z
3

, z ∈ D,

belongs to GL.

Theorem 3. Let 0 < r < 1.
(i) If g ∈ Gc, then√

−hc(−r)
r

(1− r) ≤ |g(z)| ≤
√

hc(−r)
r

(1 + r), |z| = r. (12)

(ii) If g ∈ GL, then√
−hL(−r)

r
(1− r) ≤ |g(z)| ≤

√
hL(−r)

r
(1 + r), |z| = r. (13)

Proof. (i) Let g ∈ Gc and define

h(z) :=
z(g(z))2

(1− z)2 , z ∈ D. (14)

Clearly, h is holomorphic in D and a simple calculation shows that

h′(z)
h(z)

− 1
z
=

(
log

h(z)
z

)′
=

(
log
(

1
z
· z(g(z))2

(1− z)2

))′
=

(
log

(g(z))2

(1− z)2

)′
= (2 log g(z)− 2 log(1− z))′ =

= 2
g′(z)
g(z)

+
2

1− z
, z ∈ D.

Hence,

zh′(z)
h(z)

= 2
zg′(z)
g(z)

+
2z

1− z
+ 1 =

2zg′(z)
g(z)

+
1 + z
1− z

, z ∈ D.
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Since g ∈ Gc,
zh′(z)
h(z)

≺ φc(z), z ∈ D. (15)

Using the result of Ma and Minda ([1] Corollary 1’) we deduce that

−hc(−r) ≤ |h(z)| ≤ hc(r), |z| = r,

i.e., by (14),

−hc(−r) ≤
∣∣∣∣ z(g(z))2

(1− z)2

∣∣∣∣ ≤ hc(r), |z| = r,

which yields (12).
(ii) By a similar argument, we can also prove (13) and therefore the details are omitted.

Theorem 4. Let 0 < r < 1.
(i) If g ∈ Gc, then∣∣∣∣arg

g(z0)

(1− z0)2

∣∣∣∣ ≤ 1
2

max
|z|=r

arg
hc(z)

z
, |z0| = r, arg 1 := 0. (16)

(ii) If g ∈ GL, then∣∣∣∣arg
g(z0)

(1− z0)2

∣∣∣∣ ≤ 1
2

max
|z|=r

arg
hL(z)

z
, |z0| = r, arg 1 := 0. (17)

Proof. (i) Let g ∈ Gc. Then by (15) a function h defined by (14) belongs to S∗(φc). Thus, in
view of a result from Ma and Minda ([1] Corollary 3’) the following inequality holds∣∣∣∣arg

h(z0)

z0

∣∣∣∣ ≤ max
|z|=r

arg
hc(z)

z
, |z0| = r,

where hc is defined by (11). A substitution of (14) yields (16).
(ii) By a similar argument, we can also prove (17) and therefore the details

are omitted.

3. Initial Coefficient Bounds for the Class GL and Gc

By making use of the following lemmas, we compute a few coefficient estimates for
g ∈ Gc and for g ∈ GL. Let B := {ω ∈ H : |ω(z)| ≤ 1, z ∈ D} and B0 be the subclass of B
of all ω such that ω(0) = 0. The elements of B0 are known as Schwarz functions.

We will apply two lemmas below to prove the main theorem of this section. The first
one was shown by Keogh and Merkes ([33] Inequality 7, p. 10).

Lemma 2 ([33]). If ω ∈ B0 is of the form

ω(z) =
∞

∑
n=1

wnzn, z ∈ D, (18)

then for ν ∈ C,
|w2 − νw2

1| ≤ max{1, |ν|}. (19)

The following lemma was shown by Prokhorov and Szynal ([34] Lemma 2, p. 128).

Lemma 3 ([34]). If ω ∈ B, then for any real numbers q1 and q2, the following sharp
estimate holds:

|w3 + q1w1w2 + q2w3
1| ≤ H(q1, q2), (20)
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where

H(q1, q2) :=



1, (q1, q2) ∈ D1 ∪ D2,

|q2|, (q1, q2) ∈ ∪7
k=3Dk ,

2
3
(|q1|+ 1)

(
|q1|+ 1

3(|q1|+ 1 + q2)

) 1
2

, (q1, q2) ∈ D8 ∪ D9,

q2

3

(
q2

1 − 4
q2

1 − 4q2

)(
q2

1 − 4
3(q2 − 1)

) 1
2

, (q1, q2) ∈ (D10 ∪ D11) \ {±2, 1},

2
3
(|q1| − 1)

(
|q1| − 1

3(|q1| − 1− q2)

) 1
2

, (q1, q2) ∈ D12,

(21)

and the sets Dk, k = 1, 2, . . . , 12, are defined in [34]. Particularly,

D1 :=
{
(q1, q2) : |q1| ≤

1
2

, |q2| ≤ 1
}

,

D2 :=
{
(q1, q2) :

1
2
≤ |q1| ≤ 2,

4
27

(|q1|+ 1)3 − (|q1|+ 1) ≤ q2 ≤ 1
}

.
(22)

Now we demonstrate upper bounds for early coefficients and for the Fekete–Szegö
functional in the classes Gc and GL.

Theorem 5. If g ∈ Gc is of the form (1), then

|d1 + 1| ≤ 1
2

, (23)

|d1| ≤
3
2

, (24)

∣∣∣2d2 − d2
1 + 1

∣∣∣ ≤ 1
2

, (25)

|d2| ≤
3
4

, (26)

∣∣∣3d3 − 3d1d2 + d3
1 + 1

∣∣∣ ≤ 1
2

, (27)

|d3| ≤
5
12

(28)

and for δ ∈ C,

|d2 − δd2
1| ≤

1
4
(max{1, |1− δ|}+ 2|1− 2δ|+ 4|δ|). (29)

Inequalities (23)–(27) are sharp.

Proof. By (4) there exists w ∈ B0 of the form (18) such that

2zg′(z)
g(z)

+
1 + z
1− z

= φc(w(z)) = w(z) +
√

1 + (w(z))2, z ∈ D. (30)

Taking into account (1) we obtain

2zg′(z)
g(z)

+
1 + z
1− z

=1 + 2(d1 + 1)z + 2(2d2 − d2
1 + 1)z2

+ 2
(

3d3 − 3d1d2 + d3
1 + 1

)
z3 + . . . , z ∈ D.

(31)
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By (18), for z ∈ D we have

w(z) +
√

1 + (w(z))2 = 1 + w1z +
(

w2 +
1
2

w2
1

)
z2 + (w3 + w1w2)z3 + . . . (32)

Now, by comparing the corresponding coefficients in (30)–(32), we obtain

2(d1 + 1) = w1,

2(2d2 − d2
1 + 1) = w2 +

1
2

w2
1,

2(3d3 − 3d1d2 + d3
1 + 1) = w3 + w1w2.

(33)

Since
|w1| ≤ 1, (34)

(e.g., [35] Vol. I, p. 85) from the first equation in (33) results in (23) and (24) follow easily.
The second equation in (33) together with (19) yields∣∣∣2(2d2 − d2

1 + 1)
∣∣∣ = ∣∣∣∣w2 +

1
2

w2
1

∣∣∣∣ ≤ 1,

i.e., the inequality (25).
By substituting the first formula in (33) for d1 into the second formula in (33) we obtain

4d2 = w2 + w2
1 − 2w1. (35)

Hence by using (19) and (34) we obtain

4|d2| ≤ |w2 + w2
1|+ 2|w1| ≤ 3,

which yields (26).
Since (1, 0) ∈ D2, where D2 is defined by (22), it follows from (21) that H(1, 0) = 1.

Thus, by applying (20) on the third equation in (33) yields∣∣∣6d3 − 6d1d2 + 2d3
1 + 2

∣∣∣ = |w3 + w1w2| ≤ H(1, 0) = 1,

i.e., the inequality (27).
By substituting the formulas of d1 in (33), and d2 in (35) into the third formula in (33)

we obtain
6d3 = w3 +

7
4

w1w2 +
1
2

w3
1 −

3
2

w2 −
3
2

w2
1

Since (7/4, 1/2) ∈ D2, it follows from (21) that H(7/4, 1/2) = 1. Therefore by apply-
ing (19), (20) and (34) we obtain

6|d3| ≤ H
(

7
4

,
1
2

)
+

3
2
=

5
2

,

which yields (28).
By using (35) and the formula for d1, and by applying (19) and (34), for δ ∈ C we

obtain

|d2 − δd2
1| =

1
4

[
w2 + (1− δ)w2

1 + 2(2δ− 1)w1 − 4δ
]

≤ 1
4

(∣∣∣w2 + (1− δ)w2
1

∣∣∣+ 2|1− 2δ|+ 4|δ|
)

≤ 1
4
(max{1, |1− δ|}+ 2|1− 2δ|+ 4|δ|),
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which leads to the inequality (29).
Equalities in (23) and (24) hold for the function g ∈ Gc satisfying (30) with w(z) := −z

for z ∈ D. Equalities in (25) and (26) hold for the function g ∈ Gc satisfying (30) with
w(z) := z2 and w(z) = −z for z ∈ D, respectively. Equality in (27) holds for the function
g ∈ Gc satisfying (30) with w(z) := z3 for z ∈ D.

Now we discuss the class GL. By (5) there exists w ∈ B0 of the form (18) such that

2zg′(z)
g(z)

+
1 + z
1− z

= φL(w(z)) =
√

1 + w(z), z ∈ D. (36)

Taking into account (18) for z ∈ D we have

√
1 + w(z) = 1 +

w1

2
z +

1
2

(
w2 −

w2
1

4

)
z2 +

1
2

(
w3 −

w1w2

2
+

w3
1

8

)
z3 + . . . . (37)

By virtue of (36) and (37) by comparing corresponding coefficients we obtain

d1 + 1 =
w1

4
,

2d2 − d2
1 + 1 =

1
4

(
w2 −

w2
1

4

)
,

3d3 − 3d1d2 + d3
1 + 1 =

1
4

(
w3 −

w1w2

2
+

w3
1

8

)
.

Hence,

d1 =
1
4

w1 − 1,

d2 =
1
8
(w2 − 2w1),

d3 =
1

12

(
w3 −

1
8

w1w2 +
1

16
w3

1 −
3
2

w2

)
.

By similar computations as in Theorem 5 we can formulate the following theorem.

Theorem 6. If g ∈ GL is of the form (1), then

|d1 + 1| ≤ 1
4

, (38)

|d1| ≤
5
4

, (39)

∣∣∣2d2 − d2
1 + 1

∣∣∣ ≤ 1
4

, (40)

|d2| ≤
1
4

, (41)

∣∣∣3d3 − 3d1d2 + d3
1 + 1

∣∣∣ ≤ 1
4

(42)

and
|d3| ≤

5
24
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and for δ ∈ C,

|d2 − δd2
1| ≤

1
4

(
1
2

max
{

1,
1
2
|δ|
}
+ |1− 2δ|+ 4|δ|

)
.

Inequalities (38)–(42) are sharp.

4. Differential Subordination Results Involving Gc and GL

In this section, we obtain a few differential subordination results. For the proofs, we
need the following lemma (see [36] Theorem 3.4h, p. 132).

Lemma 4. Let q be univalent in D, θ and ϕ be holomorphic in a domain D containing q(D) with
ϕ(w) 6= 0 when w ∈ q(D). Let Q(z) := zq′(z)ϕ(q(z)) and h(z) := θ(q(z)) + Q(z) for z ∈ D.

Suppose that either

(i) Q is starlike univalent in D, or
(ii) h is convex univalent D.

Assume also that

(iii)

Re
zh′(z)
Q(z)

> 0, z ∈ D.

If p ∈ H with p(0) = q(0), p(D) ⊂ D, and

θ(p(z)) + zp′(z)ϕ(p(z)) ≺ θ(q(z)) + zq′(z)ϕ(q(z)), z ∈ D,

then p ≺ q and q is the best dominant.

Theorem 7. If g ∈ H with g(0) = 1 and satisfies

2zg′(z)
g(z)

+
1 + z
1− z

≺ 1 +
z√

1 + z2
, z ∈ D, (43)

then

p(z) :=
(

g(z)
1− z

)2

≺ φc(z), z ∈ D, (44)

i.e., p ∈ Pc.

Proof. I. Let θ(w) := 1, w ∈ C, and ϕ(w) := 1/w, w ∈ C \ {0}. Note that φc(D) ⊂ D :=
C \ {0} and θ and ϕ are holomorphic in D. Thus,

Q(z) := zφ′c(z)ϕ(φc(z)) =
zφ′c(z)
φc(z)

=
z√

1 + z2
, z ∈ D, (45)

is well defined and holomorphic. Since Q′(0) = 1 and

Re
zQ′(z)
Q(z)

= Re
1

1 + z2 > 0, z ∈ D, (46)

it follows that Q is a univalent starlike function ([37] p. 41, see also [38] Theorem 2.2, p. 92).
Hence, for a function h(z) := θ(φc(z)) + Q(z) = 1 + Q(z), z ∈ D, we obtain

Re
zh′(z)
Q(z)

= Re
zQ′(z)
Q(z)

> 0, z ∈ D.
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Thus, for any function p ∈ Hwith p(0) = φc(0) = 1 such that p(D) ⊂ D, i.e., p(z) 6= 0
for z ∈ D, from Lemma 4 it follows that the subordination

1 +
zp′(z)
p(z)

≺ 1 +
zφ′c(z)
φc(z)

= 1 +
z√

1 + z2
, z ∈ D, (47)

yields the subordination p ≺ φc.
II. Let now take g ∈ H with g(0) = 1 and g(z) 6= 0 for z ∈ D satisfying (43). Define

the function p as in (44). We see that p(0) = φc(0) = 1, p(z) 6= 0 for z ∈ D and p is
holomorphic. Since

1 +
zp′(z)
p(z)

=
2zg′(z)

g(z)
+

1 + z
1− z

, z ∈ D,

from (47), (44) follows, which completes the proof.

Theorem 8. If g ∈ H with g(0) = 1 and satisfies

2zg′(z)
g(z)

+
1 + z
1− z

≺ 2 + 3z
2(1 + z)

, z ∈ D, (48)

then p ≺ φL, i.e., p ∈ PL, where p is defined in (44).

Proof. Let θ(w) := 1, w ∈ C, and ϕ(w) := 2/w, w ∈ C \ {0}. Note that φL(D) ⊂ D :=
C \ {0} and θ and ϕ are holomorphic in D. Thus

Q(z) := zφ′L(z)ϕ(φL(z)) =
2zφ′L(z)
φL(z)

=
z

1 + z
, z ∈ D, (49)

is well defined and holomorphic. Since Q′(0) = 1 and

Re
zQ′(z)
Q(z)

= Re
1

1 + z
> 0, z ∈ D, (50)

it follows that Q is a univalent starlike function. Hence, for the function h(z) := θ(φL(z)) +
Q(z) = 1 + Q(z), z ∈ D, we obtain

Re
zh′(z)
Q(z)

= Re
zQ′(z)
Q(z)

> 0, z ∈ D.

Thus, for any function p ∈ Hwith p(0) = φL(0) = 1 such that p(D) ⊂ D, i.e., p(z) 6= 0
for z ∈ D, from Lemma 4 it follows that the subordination

1 +
zp′(z)
p(z)

≺ 1 +
zφ′L(z)
φL(z)

=
2 + 3z

2(1 + z)
, z ∈ D, (51)

yields the subordination p ≺ φL.
II. Let now take g ∈ H with g(0) = 1 and g(z) 6= 0 for z ∈ D satisfying (48). Define

a function p as in (44). We see that p(0) = φL(0) = 1, p(z) 6= 0 for z ∈ D and p is
holomorphic. Since

1 +
zp′(z)
p(z)

=
2zg′(z)

g(z)
+

1 + z
1− z

, z ∈ D,

from (51) it follows that p ≺ φL, which completes the proof.

Theorem 9. If g ∈ H with g(0) = 1 and satisfies

2zg′(z)
g(z)

+
1 + z
1− z

≺ z +
√

1 + z2 +
z√

1 + z2
, z ∈ D, (52)
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then

p(z) := z
(

g(z)
1− z

)2
(∫ z

0

(
g(ζ)
1− ζ

)2

dζ

)−1

≺ φc(z), z ∈ D, (53)

i.e., p ∈ Pc.

Proof. I. Let θ(w) := w, w ∈ C, and ϕ(w) := 1/w, w ∈ C \ {0}. Note that φc(D) ⊂
D := C \ {0} and θ and ϕ are holomorphic in D. Thus, the function Q defined by (45)
is holomorphic and satisfies (46), i.e., it is univalent starlike. Hence, for the function
h(z) := θ(φc(z)) + Q(z) = φc(z) + Q(z), z ∈ D, by using (46) we obtain

Re
zh′(z)
Q(z)

= Re
zφ′c(z)
Q(z)

+ Re
zQ′(z)
Q(z)

= Re φc(z) + Re
zQ′(z)
Q(z)

> 0, z ∈ D.

Thus, for any function p ∈ Hwith p(0) = φc(0) = 1 such that p(D) ⊂ D, i.e., p(z) 6= 0
for z ∈ D, from Lemma 4 it follows that the subordination

p(z) +
zp′(z)
p(z)

≺ φc(z) +
zφ′c(z)
φc(z)

= z +
√

1 + z2 +
z√

1 + z2
, z ∈ D, (54)

yields the subordination p ≺ φc.
II. Let now take g ∈ H with g(0) = 1 and g(z) 6= 0 for z ∈ D satisfying (43). Define

the function p as in (53). We see that

p(0) = lim
z→0

z
(

g(z)
1− z

)2
(∫ z

0

(
g(ζ)
1− ζ

)2

dζ

)−1

= (g(0))2 lim
z→0

z

(∫ z

0

(
g(ζ)
1− ζ

)2

dζ

)−1

= 1 = φc(0),

p(z) 6= 0 for z ∈ D and p is holomorphic. Since

p(z) +
zp′(z)
p(z)

=
2zg′(z)

g(z)
+

1 + z
1− z

, z ∈ D,

from (54), (52) follows, which completes the proof.

Theorem 10. If g ∈ H with g(0) = 1 and satisfies

2zg′(z)
g(z)

+
1 + z
1− z

≺
√

1 + z +
z

2(1 + z)
, z ∈ D,

then p ≺ φL, i.e., p ∈ PL, where p is defined in (53).

Proof. Let θ(w) := w, w ∈ C, and ϕ(w) := 2/w, w ∈ C \ {0}. Note that φL(D) ⊂
D := C \ {0} and θ and ϕ are holomorphic in D. Thus, the function Q defined by (49)
is holomorphic and satisfies (50), i.e., it is univalent starlike. Hence, for the function
h(z) := θ(φL(z)) + Q(z) = φL(z) + Q(z), z ∈ D, by using (50) we obtain

Re
zh′(z)
Q(z)

= Re
zφ′L(z)
Q(z)

+ Re
zQ′(z)
Q(z)

= Re φL(z) + Re
zQ′(z)
Q(z)

> 0, z ∈ D.

Thus, for any function p ∈ Hwith p(0) = φL(0) = 1 such that p(D) ⊂ D, i.e., p(z) 6= 0
for z ∈ D, from Lemma 4 it follows that the subordination

p(z) +
zp′(z)
p(z)

≺ φL(z) +
zφ′L(z)
φL(z)

=
√

1 + z +
z

2(1 + z)
, z ∈ D,
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yields the subordination p ≺ φL.
Further argumentation is as in Part II of the proof of Theorem 9.

5. Conclusions

In this paper, two ideas were combined, namely the class P∗(1), which contains
normalized holomorphic functions φ having positive real part mapping univalently the
unit disk D onto a set φ(D) symmetric with respect to the real axis and starlike with respect
to 1, and the class of starlike functions with respect to the boundary point. Our research
concerns the case when φ := φc and φ := φL, of which they map the unit disk onto either a
crescent shaped domain or a domain bounded by lemniscate of Bernoulli, respectively, and
both domains are symmetric with respect to the real axis. This property of symmetry is the
basis for finding the analytical and geometrical properties of the studied classes. The use of
the functions φc and φL is reasonable and makes sense as these functions have been studied
by other authors before, and have been used to construct subclasses of starlike functions
with respect to the interior point. Using them for starlikeness with respect to the boundary
point is a new original idea. Research on the introduced classes can be developed both
for further geometrical and analytical properties, with particular study on the coefficient
problems as Hankel or Hermitian–Toeplitz matrices.
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