Pre-Invexity and Fuzzy Fractional Integral Inequalities via Fuzzy Up and Down Relation
Abstract
:1. Introduction
2. Preliminary Concepts and Definitions
- (i)
- For a given the relation , defined on by
- (1)
- is normal if there exists and
- (2)
- is upper semi-continuous on if for there exist and yielding for all with
- (3)
- is fuzzy convex, meaning that for all and ;
- (4)
- is compactly supported, which means that is compact.
3. Main Results
4. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B.T. Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte Type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 2019, 353, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.-K.; Hong, M.-Y.; Xu, Y.-F.; Shen, Z.-H.; Chu, Y.-M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
- Qian, W.-M.; Zhang, W.; Chu, Y.-M. Bounding the convex combination of arithmetic and integral means in terms of one parameter harmonic and geometric means. Miskolc Math. Notes 2019, 20, 1157–1166. [Google Scholar] [CrossRef]
- Khan, M.B.; Catas, A.; Aloraini, N.; Soliman, M.S. Some Certain Fuzzy Fractional Inequalities for Up and Down ℏ-Pre-Invex via Fuzzy-Number Valued Mappings. Fractal Fract. 2023, 7, 171. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Shi, L.; Chu, Y.-M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. RACSAM 2020, 114, 1–14. [Google Scholar] [CrossRef]
- Khan, M.B.; Othman, H.A.; Santos-García, G.; Saeed, T.; Soliman, M.S. On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings. Chaos Solitons Fractals 2023, 169, 113274. [Google Scholar] [CrossRef]
- Mohan, S.R.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.B.; Treanțǎ, S.; Soliman, M.S. Generalized Preinvex Interval-Valued Functions and Related Hermite–Hadamard Type Inequalities. Symmetry 2022, 14, 1901. [Google Scholar] [CrossRef]
- Saeed, T.; Khan, M.B.; Treanțǎ, S.; Alsulami, H.H.; Alhodaly, M.S. Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 368. [Google Scholar] [CrossRef]
- Khan, M.B.; Othman, H.A.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings and related inequalities. AIMS Math. 2023, 8, 6777–6803. [Google Scholar] [CrossRef]
- Hadamard, J. Etude sur les proprietes des fonctions entieres et en particulier d’une function considérée par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Hermite, C. Sur deux limites d’une integrale definie. Mathesis 1883, 3, 82. [Google Scholar]
- Zhao, T.H.; Castillo, O.; Jahanshahi, H.; Yusuf, A.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.M. A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 2021, 20, 160–176. [Google Scholar]
- Zhao, T.H.; Wang, M.K.; Chu, Y.M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42B, 491–501. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Hai, G.J.; Chu, Y.M. Landen inequalities for Gaussian hypergeometric function. RACSAM Rev. Real Acad. A 2022, 116, 1–23. [Google Scholar] [CrossRef]
- Zhao, T.H.; Qian, W.M.; Chu, Y.M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
- Chu, Y.M.; Wang, G.D.; Zhang, X.H. The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 2011, 284, 53–663. [Google Scholar] [CrossRef]
- Chu, Y.M.; Xia, W.F.; Zhang, X.H. The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal. 2012, 105, 412–442. [Google Scholar] [CrossRef] [Green Version]
- Hajiseyedazizi, S.N.; Samei, M.E.; Alzabut, J.; Chu, Y.M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021, 19, 1378–1405. [Google Scholar] [CrossRef]
- Jin, F.; Qian, Z.S.; Chu, Y.M.; Rahman, M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 2022, 12, 790–806. [Google Scholar] [CrossRef]
- Wang, F.Z.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.M. Numerical solution of traveling waves in chemical kinetics: Time-fractional fisher’s equations. Fractals 2022, 30, 2240051. [Google Scholar] [CrossRef]
- Chu, Y.M.; Siddiqui, M.K.; Nasir, M. On topological co-indices of polycyclic tetrathiafulvalene and polycyclic oragano silicon dendrimers. Polycycl. Aromat. Compd. 2022, 42, 2179–2197. [Google Scholar] [CrossRef]
- Chu, Y.M.; Rauf, A.; Ishtiaq, M.; Siddiqui, M.K.; Muhammad, M.H. Topological properties of polycyclic aromatic nanostars dendrimers. Polycycl. Aromat. Compd. 2022, 42, 1891–1908. [Google Scholar] [CrossRef]
- Chu, Y.M.; Numan, M.; Butt, S.I.; Siddiqui, M.K.; Ullah, R.; Cancan, M.; Ali, U. Degree-based topological aspects of polyphenylene nanostructures. Polycycl. Aromat. Compd. 2022, 42, 2591–2606. [Google Scholar] [CrossRef]
- Chu, Y.M.; Muhammad, M.H.; Rauf, A.; Ishtiaq, M.; Siddiqui, M.K. Topological study of polycyclic graphite carbon nitride. Polycycl. Aromat. Compd. 2022, 42, 3203–3215. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Singh, J.; Baleanu, D. On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law. Math. Methods Appl. Sci. 2019, 43, 443–457. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, J.; Tanwar, K.; Baleanu, D. A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler Laws. Int. J. Heat Mass Transf. 2019, 138, 1222–1227. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Budak, H.; Treanțǎ, S.; Soliman, M.S. Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for (𝒑, 𝕵)-convex fuzzy-interval-valued functions. AIMS Math. 2023, 8, 7437–7470. [Google Scholar] [CrossRef]
- Khan, M.B.; Othman, H.A.; Voskoglou, M.G.; Abdullah, L.; Alzubaidi, A.M. Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings. Mathematics 2023, 11, 550. [Google Scholar] [CrossRef]
- Khan, M.B.; Rakhmangulov, A.; Aloraini, N.; Noor, M.A.; Soliman, M.S. Generalized Harmonically Convex Fuzzy-Number-Valued Mappings and Fuzzy Riemann–Liouville Fractional Integral Inequalities. Mathematics 2023, 11, 656. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Salahshour, S.; Abbasbandy, S. Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 2012, 16, 297–302. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Hermite–Hadamard Inequalities for Convex Fuzzy-Number-Valued Mappings via Fuzzy Riemann Integrals. Mathematics 2022, 10, 3251. [Google Scholar] [CrossRef]
- Chu, Y.M.; Zhao, T.H. Concavity of the error function with respect to Hölder means. Math. Inequal. Appl. 2016, 19, 589–595. [Google Scholar] [CrossRef]
- Zhao, T.H.; Zhou, B.C.; Wang, M.K.; Chu, Y.M. On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 2019, 42. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.H.; Wang, M.K.; Zhang, W.; Chu, Y.M. Quadratic transformation inequalities for Gaussian hyper geometric function. J. Inequal. Appl. 2018, 2018, 251. [Google Scholar] [CrossRef] [Green Version]
- Qian, W.M.; Chu, H.H.; Wang, M.K.; Chu, Y.M. Sharp inequalities for the Toader mean of order −1 in terms of other bivariate means. J. Math. Inequal. 2022, 16, 127–141. [Google Scholar] [CrossRef]
- Zhao, T.H.; Chu, H.H.; Chu, Y.M. Optimal Lehmer mean bounds for the nth power-type Toader mean of n = −1, 1, 3. J. Math. Inequal. 2022, 16, 157–168. [Google Scholar] [CrossRef]
- Ibrahim, M.; Saeed, T.; Alshehri, A.M.; Chu, Y.M. Using artificial neural networks to predict the rheological behavior of non-Newtonian grapheme-ethylene glycol nanofluid. J. Therm. Anal. Calorim. 2021, 145, 1925–1934. [Google Scholar] [CrossRef]
- Fejér, L. Uberdie Fourierreihen, II. Math. Naturwise. Anz Ung. Akad Wiss. 1906, 24, 369–390. (In Hungarian) [Google Scholar]
- Baleanu, D.; Fernandez, A. On fractional operators and their classifications. Mathematics 2019, 7, 830. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley and Sons: New York, NY, USA, 1993. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier: New York, NY, USA, 2006. [Google Scholar]
- Bhatter, S.; Mathur, A.; Kumar, D.; Singh, J. A new analysis of fractional Drinfeld-Sokolov-Wilson model with exponential memory. Physics A 2020, 537, 122578. [Google Scholar] [CrossRef]
- Bhatter, S.; Mathur, A.; Kumar, D.; Nisar, K.S.; Singh, J. Fractional Modified Kawahara Equation with Mittag-Leffler Law. Chaos Solitons Fractals 2019, 131, 109508. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Wien, Austria, 1997. [Google Scholar]
- Singh, J.; Kilicman, A.; Kumar, D.; Swroop, R.; Fadzilah, M.A. Numerical study for fractional model of nonlinear predator prey biological population dynamical system. Therm. Sci. 2019, 23, 2017–2025. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.; Saeed, T.; Algehyne, E.A.; Khan, M.; Chu, Y.M. The effects of L-shaped heat source in a quarter-tube enclosure filled with MHD nanofluid on heat transfer and irreversibilities, using LBM: Numerical data, optimization using neural network algorithm (ANN). J. Therm. Anal. Calorim. 2021, 144, 2435–2448. [Google Scholar] [CrossRef]
- Ibrahim, M.; Saleem, S.; Chu, Y.M.; Ullah, M.; Heidarshenas, B. An investigation of the exergy and first and second laws by two-phase numerical simulation of various nanopowders with different diameter on the performance of zigzag-wall micro-heat sink (ZZW-MHS). J. Therm. Anal. Calorim. 2021, 144, 1611–1621. [Google Scholar] [CrossRef]
- Madhukesh, J.K.; Kumar, R.N.; Gowda, R.P.; Prasannakumara, B.C.; Ramesh, G.K.; Khan, M.I.; Khan, S.U.; Chu, Y.M. Numerical simulation of AA7072-AA7075/water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: A non-Fourier heat flux model approach. J. Mol. Liquids 2021, 335, 116103. [Google Scholar] [CrossRef]
- Li, J.; Alawee, W.H.; Rawa, M.J.; Dhahad, H.A.; Chu, Y.M.; Issakhov, A.; Abu-Hamdeh, N.H.; Hajizadeh, M.R. Heat recovery application of nanomaterial with existence of turbulator. J. Mol. Liquids 2021, 326, 115268. [Google Scholar] [CrossRef]
- Chu, Y.M.; Hajizadeh, M.R.; Li, Z.; Bach, Q.V. Investigation of nano powders influence on melting process within a storage unit. J. Mol. Liquids 2020, 318, 114321. [Google Scholar] [CrossRef]
- Chu, Y.M.; Yadav, D.; Shafee, A.; Li, Z.; Bach, Q.V. Influence of wavy enclosure and nanoparticles on heat release rate of PCM considering numerical study. J. Mol. Liquids 2020, 319, 114121. [Google Scholar] [CrossRef]
- Chu, Y.M.; Ibrahim, M.; Saeed, T.; Berrouk, A.S.; Algehyne, E.A.; Kalbasi, R. Examining rheological behavior of MWCNT-TiO2/5W40 hybrid nanofluid based on experiments and RSM/ANN modeling. J. Mol. Liquids 2021, 333, 115969. [Google Scholar] [CrossRef]
- Iscan, I.; Wu, S. Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar]
- Iscan, I.; Kunt, M. Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals. RGMIA Res. Rep. Collect. 2015, 18, 1–19. [Google Scholar]
- Wang, M.-K.; He, Z.-Y.; Chu, Y.-M. Sharp power mean inequalities for the generalized elliptic integral of the first kind. Comput. Methods Funct. Theory 2020, 20, 111–124. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Chu, Y.M. Monotonicity and convexity involving generalized elliptic integral of the first kind. RACSAM Rev. Real Acad. A 2021, 115, 1–13. [Google Scholar] [CrossRef]
- Chu, H.H.; Zhao, T.H.; Chu, Y.M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra harmonic means. Math. Slovaca 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
- Zhao, T.H.; He, Z.Y.; Chu, Y.M. On some refinements for inequalities involving zero-balanced hyper geometric function. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Chu, Y.M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
- Khan, M.B.; Zaini, H.G.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Class Up and Down λ-Convex Fuzzy-Number Valued Mappings and Related Fuzzy Fractional Inequalities. Fractal Fract. 2022, 6, 679. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Noor, M.A.; Soliman, M.S. Perturbed Mixed Variational-Like Inequalities and Auxiliary Principle Pertaining to a Fuzzy Environment. Symmetry 2022, 14, 2503. [Google Scholar] [CrossRef]
- Khan, M.B.; Zaini, H.G.; Macías-Díaz, J.E.; Soliman, M.S. Up and Down -Pre-Invex Fuzzy-Number Valued Mappings and Some Certain Fuzzy Integral Inequalities. Axioms 2023, 12, 1. [Google Scholar] [CrossRef]
- Zhao, D.; Chu, Y.M.; Siddiqui, M.K.; Ali, K.; Nasir, M.; Younas, M.T.; Cancan, M. On reverse degree based topological indices of polycyclic metal organic network. Polycycl. Aromat. Compd. 2022, 42, 4386–4403. [Google Scholar] [CrossRef]
- Ibrahim, M.; Saeed, T.; Algehyne, E.A.; Alsulami, H.; Chu, Y.M. Optimization and effect of wall conduction on natural convection in a cavity with constant temperature heat source: Using lattice Boltzmann method and neural network algorithm. J. Therm. Anal. Calorim. 2021, 144, 2449–2463. [Google Scholar] [CrossRef]
- Adil Khan, M.; Chu, Y.-M.; Khan, T.U.; Khan, J. Some new inequalities of Hermite-Hadamard type for s-convex functions with applications. Open Math. 2017, 15, 1414–1430. [Google Scholar] [CrossRef]
- Khan, M.B.; Cătaş, A.; Aloraini, N.; Soliman, M.S. Some New Versions of Fractional Inequalities for Exponential Trigonometric Convex Mappings via Ordered Relation on Interval-Valued Settings. Fractal Fract. 2023, 7, 223. [Google Scholar] [CrossRef]
- Xiong, P.Y.; Almarashi, A.; Dhahad, H.A.; Alawee, W.H.; Abusorrah, A.M.; Issakhov, A.; Abu-Hamhed, N.H.; Shafee, A.; Chu, Y.M. Nanomaterial transportation and exergy loss modeling incorporating CVFEM. J. Mol. Liquids 2021, 330, 115591. [Google Scholar] [CrossRef]
- Wang, T.; Almarashi, A.; Al-Turki, Y.A.; Abu-Hamdeh, N.H.; Hajizadeh, M.R.; Chu, Y.M. Approaches for expedition of discharging of PCM involving nanoparticles and radial fins. J. Mol. Liquids 2021, 329, 115052. [Google Scholar] [CrossRef]
- Xiong, P.Y.; Almarashi, A.; Dhahad, H.A.; Alawee, W.H.; Issakhov, A.; Chu, Y.M. Nanoparticles for phase change process of water utilizing FEM. J. Mol. Liquids 2021, 334, 116096. [Google Scholar] [CrossRef]
- Chu, Y.M.; Abu-Hamdeh, N.H.; Ben-Beya, B.; Hajizadeh, M.R.; Li, Z.; Bach, Q.V. Nanoparticle enhanced PCM exergy loss and thermal behavior by means of FVM. J. Mol. Liquids 2020, 320, 114457. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Class of Preinvex Fuzzy Mappings and Related Inequalities. Mathematics 2022, 10, 3753. [Google Scholar] [CrossRef]
- Khan, M.B.; Macías-Díaz, J.E.; Treanțǎ, S.; Soliman, M.S. Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions. Mathematics 2022, 10, 3851. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Soliman, M.S. New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals. Symmetry 2022, 14, 2322. [Google Scholar] [CrossRef]
- Khan, M.B.; Macías-Díaz, J.E.; Soliman, M.S.; Noor, M.A. Some New Integral Inequalities for Generalized Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 622. [Google Scholar] [CrossRef]
- Nwaeze, E.R.; Khan, M.A.; Chu, Y.M. Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex interval valued functions. Adv. Differ. Equ. 2020, 2020, 507. [Google Scholar] [CrossRef]
- Zhao, T.H.; Bhayo, B.A.; Chu, Y.M. Inequalities for generalized Grötzsch ring function. Comput. Methods Funct. Theory 2022, 22, 559–574. [Google Scholar] [CrossRef]
- Zhao, T.H.; He, Z.Y.; Chu, Y.M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Chu, Y.M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
- Khan, M.B.; Cătaş, A.; Alsalami, O.M. Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 415. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Shah, N.A.; Abualnaja, K.M.; Botmart, T. Some New Versions of Hermite-Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings. Fractal Fract. 2022, 6, 83. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some new classes of pre-invex fuzzy-interval-valued functions and inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. Higher-order strongly pre-invex fuzzy mappings and fuzzy mixed variational-like inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1856–1870. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
- Nanda, N.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
- Diamond, P.; Kloeden, P.E. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar]
- Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
- Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
- Breckner, W.W. Continuity of generalized convex and generalized concave set–valued functions. Rev. Anal. Numér. Théor. Approx. 1993, 22, 39–51. [Google Scholar]
- Sadowska, E. Hadamard inequality and a refinement of Jensen inequality for set-valued functions. Result Math. 1997, 32, 332–337. [Google Scholar] [CrossRef]
- Aubin, J.P.; Cellina, A. Differential Inclusions: Set-Valued Maps and Viability Theory, Grundlehren der Mathematischen Wissenschaften; Springer: Berlin, Gemany, 1984. [Google Scholar]
- Aubin, J.P.; Frankowska, H. Set-Valued Analysis; Birkhäuser: Boston, UK, 1990. [Google Scholar]
- Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2021, 404, 178–204. [Google Scholar] [CrossRef]
- Matłoka, M. Inequalities for h-preinvex functions. Appl. Math. Comput. 2014, 234, 52–57. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite–Hadamard-type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals. J. Inequal. Appl. 2021, 2021, 98. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.B.; Macías-Díaz, J.E.; Jafari, S.; Maash, A.A.; Soliman, M.S. Pre-Invexity and Fuzzy Fractional Integral Inequalities via Fuzzy Up and Down Relation. Symmetry 2023, 15, 862. https://doi.org/10.3390/sym15040862
Khan MB, Macías-Díaz JE, Jafari S, Maash AA, Soliman MS. Pre-Invexity and Fuzzy Fractional Integral Inequalities via Fuzzy Up and Down Relation. Symmetry. 2023; 15(4):862. https://doi.org/10.3390/sym15040862
Chicago/Turabian StyleKhan, Muhammad Bilal, Jorge E. Macías-Díaz, Saeid Jafari, Abdulwadoud A. Maash, and Mohamed S. Soliman. 2023. "Pre-Invexity and Fuzzy Fractional Integral Inequalities via Fuzzy Up and Down Relation" Symmetry 15, no. 4: 862. https://doi.org/10.3390/sym15040862
APA StyleKhan, M. B., Macías-Díaz, J. E., Jafari, S., Maash, A. A., & Soliman, M. S. (2023). Pre-Invexity and Fuzzy Fractional Integral Inequalities via Fuzzy Up and Down Relation. Symmetry, 15(4), 862. https://doi.org/10.3390/sym15040862