A Class of Rough Generalized Marcinkiewicz Integrals on Product Domains
Abstract
:1. Introduction
- (i)
- ;
- (ii)
- , ;
- (iii)
- if for some constant T;
- (iv)
- with .
- (a)
- The Schwartz space is dense in ;
- (b)
- for ;
- (c)
- if ;
- (d)
- ,
2. Auxiliary Lemmas
3. Proof of the Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, Y. L2-boundedness of Marcinkiewicz integral with rough kernel. Hokk. Math. J. 1998, 27, 105–115. [Google Scholar]
- Choi, Y. Marcinkiewicz integrals with rough homogeneous kernel of degree zero in product domains. J. Math. Anal. Appl. 2001, 261, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Fan, D.; Ying, Y. Rough Marcinkiewicz integrals with L(logL)2 kernels. Adv. Math. 2001, 30, 179–181. [Google Scholar]
- Al-Qassem, A.; Al-Salman, A.; Cheng, L.; Pan, Y. Marcinkiewicz integrals on product spaces. Studia Math. 2005, 167, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Walsh, T. On the function of Marcinkiewicz. Studia Math. 1972, 44, 203–217. [Google Scholar] [CrossRef]
- Al-Qassem, H. Rough Marcinkiewicz integral operators on product spaces. Collec. Math. 2005, 36, 275–297. [Google Scholar]
- Jiang, Y.; Lu, S. A class of singular integral operators with rough kernel on product domains. Hokkaido Math. J. 1995, 24, 1–7. [Google Scholar] [CrossRef]
- Ali, M.; Al-Senjlawi, A. Boundedness of Marcinkiewicz integrals on product spaces and extrapolation. Inter. J. Pure Appl. Math. 2014, 97, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Al-Qassem, H.; Cheng, L.; Pan, Y. Generalized Littlewood-Paley functions on product spaces. Turk. J. Math. 2021, 45, 319–345. [Google Scholar] [CrossRef]
- Stein, E. On the functions of Littlewood-Paley, Lusin and Marcinkiewicz. Trans. Amer. Math. Soc. 1958, 88, 430–466. [Google Scholar] [CrossRef]
- Stein, E. Problems in harmonic analysis related to curvature and oscillatory integrals. In Proceedings of the International Congress of Mathematicians, Berkeley, CA, USA, 3–11 August 1986; pp. 196–221. [Google Scholar]
- Stein, E. Some geometrical concepts arising in harmonic analysis. In Visions in Mathematics; Springer: Berlin/Heidelberg, Germany, 2010; pp. 434–453. [Google Scholar]
- Fan, D.; Wu, H. On the generalized Marcinkiewicz integral operators with rough kernels. Canad. Math. Bull. 2011, 54, 100–112. [Google Scholar] [CrossRef]
- Yano, S. Notes on Fourier analysis. XXIX. An extrapolation theorem. J. Math. Soc. Jpn. 1951, 3, 296–305. [Google Scholar] [CrossRef]
- Sato, S. Estimates for singular integrals and extrapolation. Stud. Math. 2009, 192, 219–233. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Al-Mohammed, O. Boundedness of a class of rough maximal functions. J. Ineq. Appl. 2018, 2018, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, M.; Reyyashi, M. Lp estimates for maximal functions along surfaces of revolution on product spaces. Open Math. 2019, 17, 1361–1373. [Google Scholar] [CrossRef]
- Duoandikoetxea, J.; Rubio de Francia, J. Maximal and singular integral operators via Fourier transform estimates. Invent Math. 1986, 84, 541–561. [Google Scholar] [CrossRef]
- Al-Qassem, H.; Cheng, L.; Pan, Y. On rough generalized parametric Marcinkiewicz integrals. J. Math. Ineq. 2017, 11, 763–780. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Al-Refai, O. Boundedness of Generalized Parametric Marcinkiewicz Integrals Associated to Surfaces. Mathematics 2019, 7, 886. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.; Al-Qassem, H. A Class of Rough Generalized Marcinkiewicz Integrals on Product Domains. Symmetry 2023, 15, 823. https://doi.org/10.3390/sym15040823
Ali M, Al-Qassem H. A Class of Rough Generalized Marcinkiewicz Integrals on Product Domains. Symmetry. 2023; 15(4):823. https://doi.org/10.3390/sym15040823
Chicago/Turabian StyleAli, Mohammed, and Hussain Al-Qassem. 2023. "A Class of Rough Generalized Marcinkiewicz Integrals on Product Domains" Symmetry 15, no. 4: 823. https://doi.org/10.3390/sym15040823
APA StyleAli, M., & Al-Qassem, H. (2023). A Class of Rough Generalized Marcinkiewicz Integrals on Product Domains. Symmetry, 15(4), 823. https://doi.org/10.3390/sym15040823