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Abstract: In this article, suitable estimates for a class of rough generalized Marcinkiewicz integrals
on product spaces are established. By these estimates, together with employing Yano’s extrapola-
tion technique, we obtain the boundedness of the aforementioned integral operators under weak
conditions on singular kernels. A number of known previous results on Marcinkiewicz as well as
generalized Marcinkiewicz operators over a symmetric space are essentially improved or extended.

Keywords: rough integral operators; Marcinkiewicz integrals; product domains; extrapolation

1. Introduction

Throughout this article, we let d > 2 (d = n or m) and R? be a Euclidean space
of dimensions d. Furthermore, we let S*~! be the unit sphere in R? equipped with the
normalized Lebesgue surface measure dy,(-) = dp.

For My =1 +ivy, A = o+ iy (T4, o, v1, 12 € R with 11, 7, > 0), we assume that

Q(w, v)h(|w], |v])
n—Aq |v‘m7?\2

Kopu(w,v) = |

where h is a measurable function defined on Ry x Ry and Q) is a measurable function
defined on R" x R™ which satisfies the following properties:

Q(rw,sv) = Q(w,v), Vr,s >0, 1)
./S'H Q(w,.)dpu(w) = /%rn—l Q(.,v)du(v) =0, )

and
Qe (st xsmh. 3)

Fora > land f € S(R" x R™), we consider the generalized parametric Marcinkiewicz
integral over the symmetric space R"” x R"
drds\*/*
) @

e
rs

W N = ([ 1BsDy)

/!

where 1
BN = s [ o Kan(@0)f (e = vjded.
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Whena =2,h =1,and Ay = 1 = Ay, we denote the operator zmg)h by Mq. In this
case, M is essentially the classical Marcinkiewicz integral on product spaces. The study
of the L? boundedness of the operator M@ was started by Ding in [1], in which he estab-
lished the L2 boundedness of M@ whenever Q lies in the space L(log L)?(S"~! x S"~1).
Thereafter, the boundedness of M@ has been studied by many researchers. For ex-
ample, Choi in [2] proved the L? boundeness of M, if Q) satisfies the weaker condi-
tion Q € L(logL)(S"~! x S"~1). In [3], the authors proved that Mg is bounded on
LP(R" x R™) for all p € (1,00) if Q € L(logL)*(S"! x S"~1). Later on, the authors
of [4] improved and extended the above results. In fact, they showed that the operator
Mg is of type (p,p) forall 1 < p < o, provided that Q € L(logL)(S"~! x §"~1). Fur-
thermore, they found that by adapting the technique employed in [5] to the product space
setting, the condition Q € L(logL)(S"~! x S”~1) is optimal in the sense that it cannot
be replaced by a weaker condition Q € L(logL)!~¢(S"! x S"~1) for some ¢ € (0,1).
On the other hand, Al-Qassem in [6] showed that Mg, is bounded on LP(R" x R™) for

alll < p < 0if O € B,;O’O)(S”’1 x S"~1) with ¢ > 1. Moreover, he showed that the

condition Q) € BL(IO’O) (S"1 x S™~1) is optimal in the sense that we cannot replace it by

Qe B(go,s) (S"~1 x §"1) for any € € (—1,0). Here, BL(IO'V)(S”’l x S™~1) is a special class of
block spaces introduced in [7].
By using an extrapolation argument, the authors of [8] proved that the L¥ boundedness

ofimg/)h forall [1/2—1/p| < min{1/9,1/2} whenever h € A, (R, x R, ) for some y > 1

and Q lies in either the space L(logL)(S"~! x §™~1) or in the space B{go,o) (ST x Sn=1y
with g > 1. Here, A, (R x Ry ) (for 7 > 1) indicates the class of measurable functions /
which are defined on R x Ry and satisfy

1/
2k v drds) i
- < o0

2j+1
|h||A7<R+XR+>—§£</2j L, s

Recently, the authors of [9] established thatif # = 1and Q € L(log L)?/*(S"~! x S"~1)
2_
orQ € B,;O’“ 1)(Sn’l x §"~1), then

[, ey < I o
4

LP(R”XR’”) ”XR"’)

forall p € (1,00).

It is well known that the Marcinkiewicz integral, M, on product spaces naturally
generalizes the Marcinkiewicz integral in one parameter setting which was introduced by E.
Stein in [10]. The singularity of M, is along the diagonals {x = w} and {y = v}. The study
of singular integrals on product spaces and the study of Mg, as well as its generalizations,
which may have singularities along subvarities, has attracted the attention of many authors
in recent years. One of the principal motivations for the study of such operators is the
requirements of several complex variables and large classes of “subelliptic” equations. For
more background information, readers may refer to Stein’s survey articles [11,12].

Let us recall the definition of Triebel-Lizorkin spaces, F p 'a(]R” x R™). Assume
that 7 = ( Be) € RxRandw,p € (1,0). The homogeneous Triebel-Lizorkin space

F p 'a(]R" x R™) is defined to be the class of all tempered distributions f on R" x R"
such that

< o0,

1/a
( Y 25| (gr @ ) *f|a>

jkez

1 gy = ‘

LP (R xR™M)
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where ¢ (x) = 27ME(27¥x) for k € Z, ;(y) = 27/"](27Vy) for j € Z, and the functions
E € C(R") and ] € C5°(R™) are radial functions satisfying the following proprieties:

@ EJe[01];

(i) supp (E) C {x:[xl € (3,21}, supp()) € {y: vl € [3,2]};
(i) E(x),J(y) > T > 0if |x|,|y| € [£, 3] for some constant T;
(iv) Y EQ*x)= Y J2Jy)=1with x 0 #v.

kez. jez

.,
It was shown in [13] that the space F, “(R” x R™) satisfies the following:

.t
(@)  The Schwartz space S(R" x R™) is dense in F,, : (R" x R™);

0,2

(b) F,” (R"xR"™) =LP(R" x R") for 1 < p < o;

. ﬁ,ﬂél - W,az .
(© F, R"XR")CF, "(R"xR")ifa; <ay;
T * R
(d) <Fp (R™ x Rm)> = Fp/ (R" x R™),

where p’ denotes the exponent conjugate to p, thatis, 1/p+1/p’ = 1 whenever 1 < p < oo
and p’ ;=1 or p’ := +oo for p := +o0 or p := 1, respectively.
In light of the results in [8] concerning the boundedness of the operator zmg )h and of

(@)

the results in [9] concerning the boundedness of the generalized operator 9, 7, a natural
questions arises in the following:
Question: [s the operator zmg‘)h bounded under the same assumptions in [8] with replacing
a=2bya>17?

The main purpose of this work is to answer the above question affirmatively. Precisely,
we have the following;:

Theorem 1. Let h € Ay (Ry x Ry) for some y € (1,2] and Q € L1(S"~1 x S"~1) for some
q € (1,2]. Then, there is a constant C,, oy j, such that

2/a
(@) < v .
Hmﬂfh(f)HLP(R”XR"’) = Cpan < (—1)(r - 1)> HfHF;’a(R”Xw”)

forall p € (H“;Y,Ll, 05/37) ifa <+, and

2/u
() < 1 .
5 ey < S0 (=17 I, g
forally' < p < ocoifa >, whereCpq ) = Cp\|h|\A7(R+XR+)\|Q||Lq(gn_1xgm-1).

Theorem 2. Assumethath € Ay(Ry x Ry.) with~y € (2,00) and that Q liesin L9 (S" 1 x S"™~1)
with q € (1,2]. Then, we have

ng,)h(f)HLP(Rn xR™) = CP'Q'h (qil>2/a|f” e

F, " (R1xR™)

orall p € (1,a) ifa < ', and
forall'p v

2/
(2) < _r S
] g < (525 0, g

forallp € (7/,00) ifa > 7.
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By employing the estimates in Theorems 1 and 2 and employing an extrapolation
argument as in [14] (see also [15,16]), we obtain the following:

Theorem 3. Let h be given as in Theorem 1.
(i) IfQ € L(log L)?/%(S"~1 x §"~1), then the inequality

()
Hm%ﬁuwmmwwﬂ_cr@+HQMMﬂqulﬁmlﬁmmw&ﬂ&nﬂ\anRm

holdsforpe(ﬁv, 1r 7= )zfa<'y and for ' < p < coifa > 7.

(i) IfQ € B(O’rl)(S” Lx S"=1) for some q > 1, then the inequality

()
]mmmmwmm<q0+muW(WWM>HW%WJWOWHM

holds for p € ( )zfa<'y and for ' < p < coifa > 7.

0(+'Yl 17/ lX’

Theorem 4. Letlh € A, (R4 x Ry forsomey € (2,00) and Q € L(log L)?/*(S"~1 x "~ 1)U
2_

Béo’a 2 (S"1 x §™=1) for some q > 1. Then, the operator smg”h is bounded on LP (R™ x R™) for

pe (La)ifa <9, andforp e (v, 00)ifa >

Remark 1.
(1) The conditions assumed for O} in Theorems 3 and 4 are the weakest conditions in their
respective classes for the case « = 2 and h = 1 (see [4,6]).

or the special case h = 1, Theorem 4 gives that 1s bounded on X or a
2) For the special case h = 1, Theorem 4 gives that M) is bounded on LP (R" x R™) for all

p € (1,00), provided that Q belongs to L(logL)*/*(S"~1 x S"=1) or to B{go,%&)
(S"=1 x §™=1), which is Theorem 2.7 in [9].

(3) The result in Theorem 3 in the case x = 2 and 1 < ’y < 2 essentially improves Theorem 2
in [8], in which the authors proved the LV boundedness of SD?Q Wforp € (2L, 2L, Hence, the
range of p in Theorem 3 is better than the range of that obtained in [8].

(4) The authors of [17] proved the L? (v < p < o) boundedness of zmg”h only for the special
case 1 < vy < 2and o = «/. Therefore, the results in Theorem 3 essentially improve the main

results in [17]. @
. . o
(5) For the special case & = -y’ with 2 < y < oo, Theorem 4 leads to the boundedness of E)ﬁQ,h

forall p € (1,00).

72’27

Henceforward, the constant C signifies a positive real number that could be different
at each occurrence but is independent of all essential variables.

2. Auxiliary Lemmas

This section is devoted to introducing some notation and establishing some lemmas
that will be needed to prove the main results of this paper. For § > 2, consider the family
of measures {}ik, s = Hrs : 1,5 € Ry } and its corresponding maximal operators y; and
Spp on R" x R™ by

1
d = — / / w,v)K w, v)dwdv,
//R"mef Brs rMshe J1/2r<|w|<r 1/zsg\u\gsf( JKap(w,v)

() (w,0) = sup |[|prs|* flw,v)],

rseERy
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and

1 k+1
AR drds

Suaf)@,0) = sup [T [T el = flw0) 22,

ke s

where |11 5| is defined in the same way as ji, s but with Qh replaced by |Qh| .

Lemma 1. Assume that h € A, (R x Ry), withy > Land Q € LY(S"~1 x S"~1). Then, for
any f € LF(R" x R™) with p € (v, 00), we have

25 (Ol e e scrmy < Cpall fllpernxrm) (6)

and
15,0 ()l 2o (R sy < Cp 102 (0) | 1l o e ), @)

where Cp 0 = HQHLl(S"*l xSm-1) W’HAY(R+ xRy):

Proof. Thanks to Holder’s inequality, we obtain that

S T
1/ 1
el % £ G| < CNOUL s gy oy | o2 [ [ [ 10, 0)]

/

X |f(x —rw,y— sv)|7,dpt(w)dy(v)drals)1/7

Therefore, Minkowski’s inequality for the integrals and Corollary 5 in [18] lead to

. 1
[ Nl xremy < C||QHL{VSW Legm-1) 1l oy () xR )

’ 1/7/
(S s 10 N U7 s o))

C”Q”U(S”*l xSm—=1) Hh||A7(R+xR+) [ (1f1) HLP(R” xRmM)

IN X

IN

CConll fllr@exrm,

where

w*(f)(x,y) = sup 7/ / |f(x — rw,y — sv)|drds.

7,5>0
Inequality (7) is easily deduced from Inequality (6). O

The next lemma is found in [8] with very minor modifications. We omit the proof.

Lemma?2. Let 0 > 2, h € A (R x Ry) for some y > 1and Q € L1(S"~! x S"1) for some
q > 1. Then, the following estimates hold:

[ursll < Capn (8)

20
@

gi+1 pk+1 det
L[ ms@orSE < chuinie))ei

where 26q' < 1 and ||pys|| is the total variation of piys.

s
o'g| ", ©)

In order to prove our main results, we need to prove the following lemmas.
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Lemma 3. Suppose that 0 > 2,h € Ay(Ry x Ry ) withl <y <2and Q € L1(S"~! x S™~1)
with1 < q < 2. Let w € (1,9'] and {Gjx(-,-), j,k € Z} be arbitrary functions defined on
R™ x R™. Then, there exists a positive constant Cq, j, such that the inequality

i1 g+l 1/a 1/
«drds
>/ / prs = G| < Coy0?/*(0) ( G > (10)
JKREL 4 " jkeZ LP(R"xR™M)
LP (R xR™)
holds for all p € (a+v —/ %)

Proof. We employ a similar argument used in [19]. First, let us consider the case p €
(a, (X',XWV) By duality, there is a non-negative function 8 € L(/®)(R" x R™) such that
< 1and

||19H (p/0) (R xR™)

gk+1

Hr,s * gj,k

/91+1

keZ v

o 24
R xR™ . jkez 07 ok

By Holder’s inequality, it is easy to obtain that

14
« drds) e
s
LP(R7 xR™m)
drds

Hr,s *g]k w,v ’ 719(0.) v)dwdv (11)

gk+1

(a/
prs + Gl 0)| < CHOIBIEL g IS/

Ll(S" 1 R+XR+)
S r " d d
_ardk
[ ] o 9t = w0 = 10 )t s i S (12)
s/2 r/2
Again, by using Holder’s inequality and Inequalities (11) and (12), we have
j+1 gkl “
9 9 «drds (a/ (a/
/ / Hrs * g], < CHQHLoi gn 1y §m— 1 || ||AD(1(]§+><R+)
kez/® 6k rs
Jr LP (R xR™)
* 14 —
[/ (Z Gx(aw,v)| )sw_fy (®)(~w, ~v)dedv
jkEZ ’
/ / o —
< QOIS IS a | |9 S o () :
jkEZ L(p/n)(Rn xR™) |h| o 0 Lp/a)! (Rﬂ XRW)
_ a(a =)
where ¢(w, v) = 9(—w, —v). Therefore, since |h| ™« Yea oy , then we have
ww—yy R+ xRy)
/a 1/
gitl .kt « drds 1
[ g e < Cann®*@O)| | ¥ [g3| (13)
ez’ 6" rs keZ
Jr LP (R xR™) Jr LP (R xR™)

forall p € (a, —) For the case p = «, we use (12) and Holder’s inequality to obtain that
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Ja||®
git1 9k+1 & drds 1 y o/
H O A s < CIQUE cgn ) 115, ) <)
jkeZ LP (R xR™)
gi+1 pk+1 s r «
X ik(w —xx,v—
jkez /wuw/e /9 /5/2 /r/2 /S”*le”‘*l il 1)
( dxdy drds
h d d —dwdv
< Q0 y)| k()] () =C =
(a/ (a/
< Ch’l ( )”QHLDi gn 1y §m— 1)” ||A0(1(?&+><R+) (gz‘g]k w,v ’ )dOJdU (14)
Finally, we consider the case p € () +77/ 7,&). Define the linear operator 7" on any
function G = G« (x,y) by T(G) = M, gis * Gjx(x,y). Then, we have
HT ||L1 1,0) x [1,9)), dzds <Ch‘1 (Z g]k> (15)
HH (@O LAD 53 W 2x2) | 1 g ey ]keZ‘ ‘ L1 (R" xRM)
On the other hand, by using (6), we obtain
sup sup \#gws *Q]k\ < ‘ M, <sup]G]k]>
JKEZ (r,5)€[1,0] % LP(R7 xR™) JkeZ LP (R?xR™)
< Capu Sup’g,k‘
JkeZ LP (R xRM)
for all ¢/ < p < oo, which in turn implies
, 4 s < . 1
HHlMekr,ms * Gikll o 1,01 101,28 | o 02 b Can Hg]kHlm ) F— (16)
Therefore, by interpolating between (15) and (16) we get (10) forany p € (; +7, 7). O
Lemma 4. Assume that 6 > 2, h € A,(Ry xRy) for some 2 < v < coand Q) € L1
(St x §"71) for some 1 < q < 2. Let a < " and {Gjx(-,-), j,k € Z} be arbitrary functions
defined on R" x R™. Then, there exists a positive constant Cq, j, such that
gitl gk+l 1/a 1/a
«drds
O B < Coyn?/*(9) (Z )@4) (17)
JkEZ o ek rs jkeZ
LP(R" xR™)
Lp(RTlXRWl)

forallp € (1,a).

Proof. By duality, there is a set of functions {M;;(w,v,7,s)} defined on R" x R™ x R} x

<1land
LV (R" xR™)

R+ with ” H ||M],k H La/([ek,9k+1] X [9]'/9j+1]’%) l“’l (ZXZ)
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(=L'f
/>y

gi+1 pk+1

Hr,s g],

1/
® drds
rs
LP(R" xR™)
9k+1

drds
/9 fr,s * Gix(w, v)) M;i(w,v,1,8) ?dwdv

pi+1

1/«
< C(ng)*/* L/al 1
< oWy o gzlg]k , ()
LP (RN xR™)
Where i+1 k+1
ot o '
N(M)(w,v) / / s * My (,0,7,5) « drds.
]keZ o Je s
Since y > 2 > 9/ > a, then by Holder’s inequality we obtain
o / "/a)
s+ Mig(e,0)| < QIS g IS () s
9]+1 9k+1 o de;?
M (w—xx,v—1ny,71,s Qx,y)|du(x)d —. 19
< 0 L M 1) 100 y) o)ty = (19)

Since p’ > a, there exists a function p € L/ «)' (R" x R™) such that

R Y A hy |

Therefore, a simple change in variable together with Lemmas 1 and (19) give

o' drds

?p(w, v)dwdv.

Qi+l gk+1

Hrs % Mj/k(w, v,1,5)

"/ a)
||N(M)HL(PI/“/)(RWXRWI) < CHQHLD; So;i 1y §m—1 Hh”AW (Ry xR.) HV ( )” o /oty (R xR™)
gi+1 9k+1

o' drds
Mk (-, 1,8) )
H <] kez/e e

"/a)+1
CHQHLB; SD:t 1y §m—1 Hh”A,y (RyxRy) ||( )HL(p//a’)/(RnXRm)' (20)

X

L' /&) (Rn xRm)

IN

Therefore, by (18) and (20), Inequality (17) is proved. Consequently, the proof of
Lemma 4 is complete. O

Lemma 5. Assume that 0, Q, and {G;(-,-), j, k € Z} are given as in Lemma 3. Suppose that
heAy(Ry xRy)withl < v < ooand « > 7. Then, there exists a constant Cqy, > 0 such
that

1/«

drds e

14 4

s < Coy In?/%(6) ( ) ’g]',k >
JKEZL

gi+1 pgk+1

L/

],kEZ

(21)

Hr,s * g],

rs

LP(R" xR™)
LP (R xR™)

forall ' < p < oo.
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Proof. By (6), we have

sup  sup |pgk, i *gj,k‘ < ‘H (Sup‘gjko
JkEZ (r,s)E[l,G]X[l,@} LP (R" xR™) JkeZ LV(R”XR"’)
< Can sup‘g],) (22)
jkez LP (R xR™)
forall 4/ < p < co. Hence,
, - s < C ; . 23
HH|V€I{”/9]S*g]’k L ([119]><[1'9]'%)HZ°O(Z><Z) LP (R xR™) - Qb Hg],k 1°(Zx1Z) LP(R" xR™) ( )
By the duality, there exists i € L/ (R" x R™) such that ||| L) (RexRm) S < land
19"
04 drds !
L / / “uek’g’s Gik rs
JkeZ LP(R" xRM)
7’ drds
= —(w,v)dwd
o 5.1 ol st
/7
S CHQHLl Sn—1xS§m— 1 || ||A’Y(R+XR+)
Y\
< (z |Gix(w,v) )u (%) (—w, —v)deodv
IRIXR™ \ j ke,
/) v * (T
< Cln ( )”Q”LZ SZ 1><Sm*1)||hHA7(R+><R+) ‘g]',k HI/‘ (lP)HL(p/W’)’(RnXRm)r (24)
€2 LP/7) (R xRM)

where §(w,v) = (—w, —v). Define the linear operator £ on any function G;(w, v) by
L(Gjx(w,v)) = pgr, gis * Gix(w,v). Hence, by interpolating between (23) and (24), we

obtain
gitl gkt 1/a
adrds
L/ / Hrs * Gia| =55
]keZ
LP(R" xR™M)
0 0 1/a
«drds
= //‘Mekr%*g}k rs
jkeZq 1
LP (R xR™)
1/«
< Couln®*(6) (Z‘gfkw
jkeZ LP(R" xR™)

forall ¢/ < p < oo with 9/ < a. The proof of this lemma is complete. [

3. Proof of the Main Results

Proof of Theorem 1. We employ similar arguments as those in [19,20]. Assume that
a>1heA Ry xRy)withl <y <2and Q € LI(S" ! x §"71) with g € (1,2]. By
Minkowski’s inequality, we obtain
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M, (Fxy) = (//RMM

o)
pdrds\ /%
X f(x—w,y—v)dwdv|* rs)
> 1
< X e s /
]kz_()( Ry xRy | M882 Ja-i-ls<|w|<27is Jo-k-Tr<|v|<2kr

X Kop(w,0)f(x —w,y —v)dwdv|

2T+ // | *fx )| % 1/«
(21 —1)(2% — RyxRy Y '

Take § = 277, then In(0) < ——.
(r-D(g-1)
(0,00) with the following properties:

adrds)”“

o € C%0<gr<1, ) oulr) =

keZ

p
supp (90) € T =[071,6"H] and ’d;f’k(r) G

where Cy is independent of 6. Define the operators (0r(2)) =

ticZ

where

a0 = ([ 1By

Bri(f)(xy,r0s) = ), prs % (Ui @ Uj)  FX W)X g g1, (775):

and

jkeZ

Kop(w,v)
7’)‘13/\2 /2*1*%<\w|§2*% ~/2*k*1r<\v\§2*kr ’ ’

¢i(|¢]) and (T;(2))
for (g,¢) € R" x R™. Therefore, we obtain that for any f € S(R" x R™),

<//]R+X]R+|‘ur's *f(x'y”ad:?)l/a <C ) Ai(f)(xy),

(25)

Choose a set of functions { ¢}, defined on

= ¢;(I¢)

(26)

Therefore, to prove Theorem 1, it is sufficient to prove that there exists a positive

constant ¢ such that

||Afl( )HLP(R”XRW) < CPCQhZ 2 ([t \)(lng)z/“HfH T

forallp € (a+7/ o

77)w1th'y >, and also for all 7/ < p < co with ¢/ < a.

(27)

Let us first estimate the norm of A; ;(f) for the case p = & = 2. Indeed, by Plancherel’s

theorem, Fubini’s theorem, and Lemma 2, we obtain
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HAt,i(f) ”%Z(RH xR™M)

oot drds \ | »
jkeZ // Ejitjeti </9 /9 | f( )‘
< G 0% 7.6 agag
’ o JkEZ //]+tk+t ‘ ‘
< CpIn?() 2+ ¢ dgdg
' ]gz//jﬂkﬂ
< cp1n2<9)zfs(|t|+\i\>cg,h\|f||L2(Ranm), 28)

where Ej; = {({,§) € R" x R™: (|¢],|¢]) € Zy x Z;} and € € (0,1).

However, we estimate the LP-norm of A; ;(f) in the following. By Lemmas 3 and 5,
together with the Littlewood-Paley theory and invoking Lemma 2.3 in [9], we obtain

“At,i(f) ||LP Rn XRM)

gi+1 gk+1 drds
< ( / /9 |pr,s Uk+1®U]+t) f|“
JkeZ LP (R xR™M)
1/
< Couln®*(6) (Z | (Bkyi © Bjps) *f|lx>
ikez LP (R xRM)
1
< G (29)
@D T ey
forall p € (tx+7’ 17 77) with &« < 9/, and also for all 7/ < p < oo with a > /. There-

fore, by interpolating (28) with (29), we immediately obtain (27). This ends the proof of
Theorem 1.

Proof of Theorem 2. To prove this theorem, we follow the exact procedure that was
used in the proof of Theorem 1, employing Lemma 4 instead of Lemma 3.

4. Conclusions
In this article, we established appropriate L? bounds for the generalized parametric

Marcinkiewicz integral operator img‘ )h under the assumption that Q) € L7(S"~1 x §"~1)
for some g > 1. Then, we used these bounds, along with Yano’s extrapolation argument,

)

to prove the boundedness of the operator zm( ), under very weak conditions on the kernel
function Q). Such conditions on Q) are considered to be the best possible among their
respective classes. The results in this article improve and extend several known results in
the field of Marcinkiewicz and generalized Marcinkiewicz operators. In fact, our results
improve and extend the results in [1-4,6,8,9,17].
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