Second Natural Connection on Riemannian Π-Manifolds
Abstract
:1. Introduction
2. Preliminaries
2.1. Riemannian -Manifolds
- (1)
- ,
- (2)
- ,
- (3)
- .
2.2. First Natural Connection on Riemannian -Manifolds
3. Second Natural Connection on Riemannian -Manifolds
4. Example
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Manev, M.; Staikova, M. On almost paracontact Riemannian manifolds of type (n, n). J. Geom. 2001, 72, 108–114. [Google Scholar] [CrossRef]
- Manev, M.; Tavkova, V. On the almost paracontact almost paracomplex Riemannian manifolds. Facta Univ. Ser. Math. Inform. 2018, 33, 637–657. [Google Scholar]
- Ivanov, S.; Manev, H.; Manev, M. Para-Sasaki-like Riemannian manifolds and new Einstein metrics. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. Mat. Racsam. 2021, 115, 112. [Google Scholar] [CrossRef]
- Manev, H.; Manev, M. Pair of associated Schouten-van Kampen connections adapted to an almost paracontact almost paracomplex Riemannian structure. Mathematics 2021, 9, 736. [Google Scholar] [CrossRef]
- Manev, H.; Manev, M. Para-Ricci-like solitons on Riemannian manifolds with almost paracontact structure and almost paracomplex structure. Mathematics 2021, 9, 1704. [Google Scholar] [CrossRef]
- Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry; Wiley-Interscience: Hoboken, NJ, USA, 1963; Volume 1. [Google Scholar]
- Alexiev, V.; Ganchev, G. Canonical Connection on a Conformal Almost Contact Metric Manifolds. Ann. Univ. Sofia-Math. 1987, 81, 29–38. [Google Scholar]
- Ganchev, G.; Mihova, V. Canonical connection and the canonical conformal group on an almost complex manifold with B-metric. Ann. Univ. Sofia-Math. 1987, 81, 195–206. [Google Scholar]
- Mekerov, D. P-connection on Riemannian almost product manifolds. Comptes Rendus L’Academie Bulg. Des. Sci. 2009, 62, 1363–1370. [Google Scholar]
- Manev, M.; Gribachev, K. Conformally invariant tensors on almost contact manifolds with B-metric. Serdica Math. J. 1994, 20, 133–147. [Google Scholar]
- Staikova, M.; Gribachev, K. Canonical connections and their conformal invariants on Riemannian P-manifolds. Serdica Math. J. 1992, 18, 150–161. [Google Scholar]
- Slovak, J. On natural connections on Riemannian manifolds. Comment. Math. Univ. Carol. 1989, 30, 389–393. [Google Scholar]
- Munoz Masque, J.; Valdes, A. Characterizing the Blaschke connection. Differ. Geom. Its Appl. 1999, 11, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Blaga, A.; Crasmareanu, M. Special connections in almost paracontact metric geometry. Bull. Iran. Math. Soc. 2015, 41, 1345–1353. [Google Scholar]
- Blaga, A.; Nannicini, A. On the geometry of metallic pseudo-Riemannian structures. Riv. Mat. Della Univ. Parma 2020, 11, 69–87. [Google Scholar]
- Chern, S.S. Complex Manifolds Without Potential Theory; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Gauduchon, P. Hermitian connections and Dirac operators. Boll. Dell’Unione Mat. Ital. 1997, 11, 257–288. [Google Scholar]
- Lichnerowicz, A. Un théorème sur les espaces homogènes complexes. Arch. Der Math. 1954, 5, 207–215. [Google Scholar] [CrossRef]
- Lichnerowicz, A. Généralisation de la géométrie kählérienne globale. Colloq. Géométrie Differ. 1955, 1955, 99–122. [Google Scholar]
- Lichnerowicz, A. Théorie Globale des Connections et des Groupes d’Homotopie; Edizioni Cremonese: Roma, Italy, 1962. [Google Scholar]
- Manev, H. First natural connection on Riemannian Π-manifolds. Mathematics 2023, 11, 1146. [Google Scholar] [CrossRef]
- Satō, I. On a structure similar to the almost contact structure. Tensor 1976, 30, 219–224. [Google Scholar]
- Mihova, V. Canonical connections and the canonical conformal group on a Riemannian almost product manifold. Serdica Math. J. 1989, 15, 351–358. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manev, H. Second Natural Connection on Riemannian Π-Manifolds. Symmetry 2023, 15, 817. https://doi.org/10.3390/sym15040817
Manev H. Second Natural Connection on Riemannian Π-Manifolds. Symmetry. 2023; 15(4):817. https://doi.org/10.3390/sym15040817
Chicago/Turabian StyleManev, Hristo. 2023. "Second Natural Connection on Riemannian Π-Manifolds" Symmetry 15, no. 4: 817. https://doi.org/10.3390/sym15040817
APA StyleManev, H. (2023). Second Natural Connection on Riemannian Π-Manifolds. Symmetry, 15(4), 817. https://doi.org/10.3390/sym15040817