Chiral Symmetry Breaking and the Masses of Hadrons: A Review
Abstract
:1. Introduction
2. Chiral Order Parameter
- When , using the trace property one findsOn the other hand, one notesHence,Therefore, one can isolate the breaking and symmetric parts as follows
- When , we also have the quark disconnect contribution denoted by the subscript below.To isolate the connected piece above, we introduce the following two quark operators.Therefore,Throughout this work, we will use this method: although a similar separation can be made by writing the quark operators in terms of right and left-handed quarks.
- Because the static heavy quark probes all the gluon configurations, it can be shown that the gluon condensate can also be expressed in terms of the eigenvalues of the Dirac modes [15].As can be seen from the above formula, the chiral-symmetry breaking effect is multiplied by and does not contribute to the gluon condensate. This shows that the physics of the gluon condensate and that of the chiral-symmetry breaking have different origins.
3. Vector and Axial-Vector Meson Mass
3.1. and
3.2. Other Hadrons
4. Other Effects in Medium
4.1. Dispersion Effects
4.1.1. Scalar Particle
4.1.2. Nucleon in Medium
4.1.3. Vector Particles
- When , then and the mass in medium can be obtained from Equation (25), which reduces to below.
- When , then and the mass in the medium can be obtained from Equation (25) separately for the transverse and longitudinal modes, which after the projection reduces to below.
5. Chiral Partners: and Mesons
5.1. and Correlation Functions
5.1.1. 4-Quark Operators in the Sector
5.1.2. Weinberg Relations for
6. Phenomenological Observations
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hatsuda, T.; Kunihiro, T. Fluctuation Effects in Hot Quark Matter: Precursors of Chiral Transition at Finite Temperature. Phys. Rev. Lett. 1985, 55, 158. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.E.; Rho, M. Scaling effective Lagrangians in a dense medium. Phys. Rev. Lett. 1991, 66, 2720. [Google Scholar] [CrossRef] [PubMed]
- Hatsuda, T.; Lee, S.H. QCD sum rules for vector mesons in the nuclear medium. Phys. Rev. C 1992, 46, R34. [Google Scholar] [CrossRef]
- Leupold, S.; Metag, V.; Mosel, U. Hadrons in strongly interacting matter. Int. J. Mod. Phys. E 2010, 19, 147. [Google Scholar] [CrossRef] [Green Version]
- Hayano, R.S.; Hatsuda, T. Hadron properties in the nuclear medium. Rev. Mod. Phys. 2010, 82, 2949. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, M.; Takahashi, T.N.; Aoki, K.; Ashikaga, S.; Hamada, E.; Honda, R.; Igarashi, Y.; Ikeno, M.; Kawama, D.; Naruki, M.; et al. Trigger Merging Module for the J-PARC E16 Experiment. IEEE Trans. Nucl. Sci. 2019, 66, 2022–2027. [Google Scholar] [CrossRef] [Green Version]
- Lacour, A.; Oller, J.A.; Meissner, U.G. The Chiral quark condensate and pion decay constant in nuclear matter at next-to-leading order. J. Phys. G 2010, 37, 125002. [Google Scholar] [CrossRef]
- Meissner, U.G.; Oller, J.A.; Wirzba, A. In-medium chiral perturbation theory beyond the mean field approximation. Ann. Phys. 2002, 297, 27–66. [Google Scholar] [CrossRef] [Green Version]
- Metag, V.; Nanova, M.; Paryev, E.Y. Meson–nucleus potentials and the search for meson–nucleus bound states. Prog. Part. Nucl. Phys. 2017, 97, 199. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, S.H. Vector meson mass in the chiral symmetry restored vacuum. Phys. Rev. D 2021, 103, L051501. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.H. Masses of hadrons in the chiral symmetry restored vacuum. Phys. Rev. D 2021, 105, 014014. [Google Scholar] [CrossRef]
- Song, T.; Hatsuda, T.; Lee, S.H. QCD sum rule for open strange meson in nuclear matter. Phys. Lett. B 2019, 792, 160. [Google Scholar] [CrossRef]
- Lee, S.H. Theory on Hadrons in Nuclear Medium. JPS Conf. Proc. 2019, 26, 011012. [Google Scholar]
- Banks, T.; Casher, A. Chiral symmetry breaking in confining theories. Nucl. Phys. B 1980, 169, 103. [Google Scholar] [CrossRef]
- Lee, S.H.; Cho, S. Chiral and UA(1) symmetry in correlation functions in medium. Int. J. Mod. Phys. E 2013, 22, 1330008. [Google Scholar] [CrossRef] [Green Version]
- Cohen, T.D.; Furnstahl, R.J.; Griegel, D.K.; Jin, X. QCD sum rules and applications to nuclear physics. Prog. Part. Nucl. Phys. 1995, 35, 221. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H. Vector mesons in-medium with finite three momentum. Phys. Rev. C 1998, 57, 927, Erratum in Phys. Rev. C 1998, 58, 3771. [Google Scholar] [CrossRef]
- Friman, B.; Lee, S.H.; Kim, H.C. Constraints on vector mesons with finite momentum in nuclear matter. Nucl. Phys. A 1999, 653, 91. [Google Scholar] [CrossRef] [Green Version]
- Gubler, P.; Kunihiro, T.; Lee, S.H. A novel probe of chiral restoration in nuclear medium. Phys. Lett. B 2017, 767, 336–340. [Google Scholar] [CrossRef]
- Weinberg, S. Precise relations between the spectra of vector and axial vector mesons. Phys. Rev. Lett. 1967, 18, 507. [Google Scholar] [CrossRef] [Green Version]
- Paryev, E.Y. Near-threshold K*(892)+ meson production in the interaction of π− mesons with nuclei. Chin. Phys. C 2020, 44, 114106. [Google Scholar] [CrossRef]
- Sung, H.; Cho, S.; Hong, J.; Lee, S.H.; Lim, S.; Song, T. K1/K* enhancement as a signature of chiral symmetry restoration in heavy ion collisions. Phys. Lett. B 2019, 819, 136388. [Google Scholar] [CrossRef]
- Stachel, J.; Andronic, A.; Braun-Munzinger, P.; Redlich, K. Confronting LHC data with the statistical hadronization model. J. Phys. Conf. Ser. 2014, 509, 012019. [Google Scholar] [CrossRef]
- Ding, H.T.; Bazavov, A.; Karsch, F.; Maezawa, Y.; Mukherjee, S.; Petreczky, P. Chiral phase transition of Nf=2+1 QCD with the HISQ action. PoS LATTICE 2014, 157. [Google Scholar]
- Cho, S.; Lee, S.H. Reduction of the K* meson abundance in heavy ion collisions. Phys. Rev. C 2018, 97, 034908. [Google Scholar] [CrossRef] [Green Version]
Particle | (MeV) | ||
---|---|---|---|
2.60 (1.17) | 0.760 | 572.5 ± 27.5 | |
0.76 (1.55) | −0.485 | ||
3.20 (1.15) | 1.165 | 655 ± 15 | |
1.85 (1.58) | 0.253 | 1060 ± 30 | |
2.097 (1.33) | 2.831 | 545 ∓ 5 | |
0.39 (1.56) | −0.227 |
Mass | Width | Mass | Width | ||
---|---|---|---|---|---|
770 | 150 | 1260 | 250–600 | ||
782 | 8.49 | 1285 | 24.2 | ||
1020 | 4.266 | 1420 | 54.9 | ||
892 | 50.3 | 1270 | 90 | ||
1410 | 236 | 1400 | 174 |
Decay Mode | Decay Mode | ||
---|---|---|---|
(100%) | (42%) | ||
(16%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.H. Chiral Symmetry Breaking and the Masses of Hadrons: A Review. Symmetry 2023, 15, 799. https://doi.org/10.3390/sym15040799
Lee SH. Chiral Symmetry Breaking and the Masses of Hadrons: A Review. Symmetry. 2023; 15(4):799. https://doi.org/10.3390/sym15040799
Chicago/Turabian StyleLee, Su Houng. 2023. "Chiral Symmetry Breaking and the Masses of Hadrons: A Review" Symmetry 15, no. 4: 799. https://doi.org/10.3390/sym15040799
APA StyleLee, S. H. (2023). Chiral Symmetry Breaking and the Masses of Hadrons: A Review. Symmetry, 15(4), 799. https://doi.org/10.3390/sym15040799