Solution of the Generalized Burgers Equation Using Homotopy Perturbation Method with General Fractional Derivative
Abstract
1. Introduction
2. Preliminaries
3. Existence and Oneness
4. Homotopy Perturbation Method
5. Analysis of Convergence
6. Examples
6.1. Case I
6.2. Case II
6.3. Case III
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A. Fractional Calculus of the Generalized Wright Function; Fractional Calculus and Applied Analysis; Institute of Mathematics and Informatics Bulgarian Academy of Sciences: Sofia, Bulgaria, 2005; Volume 8, pp. 113–126. [Google Scholar]
- Miller, K.S.; Ross, B. An Introdution to the Fractional Calculus and Fractional Differential Equations; J. Willey & Sons: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Sharma, S.; Goswami, P.; Baleanu, D.; Dubey, R.S. Comprehending the model of omicron variant using fractional derivatives. Appl. Math. Sci. Eng. 2023, 31, 2159027. [Google Scholar] [CrossRef]
- Dubey, R.S.; Goswami, P.; Baskonus, H.M.; Gomati Tailor A., G. On the existence and uniqueness analysis of fractional blood glucose-insulin minimal model. Int. J. Model. Simul. Sci. Comput. 2022. [Google Scholar] [CrossRef]
- Chaurasia, V.B.L.; Dubey, R.S. Analytical solution for the generalized time-fractional telegraph equation. Fract. Differ. Calc. 2013, 3, 21–29. [Google Scholar] [CrossRef]
- Jafari, H.; Prasad, J.G.; Goswami, P.; Dubey, R.S. Solution of the local fractional generalized KDV equation using homotopy analysis method. Fractals 2021, 29, 2140014. [Google Scholar] [CrossRef]
- Dubey, R.S.; Goswami, P.; Gill, V. A new analytical method to solve Klein-Gordon equations by using homotopy perturbation Mohand transform method. Malaya J. Mat. 2022, 10, 1–19. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier North-Holland Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006. [Google Scholar]
- Gao, W.; Yel, G.; Baskonus, H.M.; Cattani, C. Complex Solitons in the Conformable (2+ 1)-dimensional Ablowitz-Kaup-Newell-Segur Equation. AIMS Math. 2020, 5, 507–521. [Google Scholar] [CrossRef]
- Dubey, R.S.; Singh, Y.; Agarwal, P.; Saini, G.L.; Singh, V. Some results on the new fractional derivative of generalized k-Wright function. J. Interdiscip. Math. 2020, 23, 607–615. [Google Scholar] [CrossRef]
- He, J.H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [Google Scholar] [CrossRef]
- He, J.H. Homotopy perturbation method for solving boundary value problems. Phys. Lett. A 2006, 350, 87–88. [Google Scholar] [CrossRef]
- He, J.H. The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. Math. Comput. 2004, 151, 287–292. [Google Scholar] [CrossRef]
- Malyk, I.; Shrahili, M.M.A.; Shafay, A.R.; Goswami, P.; Sharma, S.; Dubey, R.S. Analytical solution of non-linear fractional Burger’s equation in the framework of different fractional derivative operators. Results Phys. 2020, 19, 103397. [Google Scholar] [CrossRef]
- Burgers, J.M. A mathematical model illustrating the theory of turbulence. In Advances in Applied Mechanics; Elsevier: Amsterdam, The Netherlands, 1948; Volume 1, pp. 171–199. [Google Scholar]
- Hopf, E. The Partial Differential Equation ut+uux=μuxx. Commun. Pure Appl. Math. 1950, 3, 201–230. [Google Scholar] [CrossRef]
- Yokus, A.; Kaya, D. Numerical and exact solutions for time fractional Burger’s equation. J. Nonlinear Sci. Appl. 2017, 10, 3419–3428. [Google Scholar] [CrossRef]
- Saad, K.M.; Atangana, A.; Baleanu, D. New fractional derivatives with non-singular kernel applied to the Burgers equation. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 063109. [Google Scholar] [CrossRef]
- Saad, K.M.; Al-Sharif, E.H.F. Analytical study for time and time-space fractional Burgers’ equation. Adv. Differ. Equ. 2017, 2017, 300. [Google Scholar] [CrossRef]
- Joshi, M.S.; Desai, N.B.; Mehta, M.N. Solution of the Burger’s Equation for Longitudinal Dispersion Phenomena Occurring in Miscible Phase Flow through Porous Media. J. Eng. Technol. Sci. 2012, 44, 12–16. [Google Scholar] [CrossRef]
- Kilicman, A.; Shokhanda, R.; Goswami, P. On the solution of (n + 1)-dimensional fractional M-Burgers equation Authors. Alex. Eng. J. 2021, 60, 1165–1172. [Google Scholar] [CrossRef]
- Yel, G.; Cattani, C.; Baskonus, H.M.; Gao, W. On the Complex Simulations with Dark-Bright to the Hirota-Maccari System. J. Comput. Nonlinear Dyn. 2021, 16, 061005. [Google Scholar] [CrossRef]
- Liu, J.G.; Yang, X.J.; Feng, Y.Y.; Cui, P. New fractional derivative with sigmoid function as the kernel and its models. Chin. J. Phys. 2020, 68, 533–541. [Google Scholar] [CrossRef]
- Yang, X.; Abdel-Aty, M.; Cattani, C. A new general fractional-order derivataive with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer. Therm. Sci. 2019, 23, 1677–1681. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and nonsingular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Atangana, A. On the new fractional derivative and application to nonlinear Fishers reaction diffusion equation. Appl. Math. Comput. 2016, 273, 948–956. [Google Scholar]
- Atangana, A.; Koca, I. Chaos in a simple nonlinear system with Atangana Baleanu derivatives with fractional order. Chaos Solitons Fractals 2016, 89, 447–454. [Google Scholar] [CrossRef]
- Dubey, R.S.; Baleanu, D.; Mishra, M.; Goswami, P. Solution of Modified Bergman’s Minimal Blood Glucose Insulin Model Using Caputo–Fabrizio Fractional Derivative. Comput. Model. Eng. Sci. 2021, 128, 1247–1263. [Google Scholar] [CrossRef]
- Malyk, I.V.; Gorbatenko, M.; Chaudhary, A.; Sharma, S.; Dubey, R.S. Numerical Solution of Nonlinear Fractional Diffusion Equation in Framework of the Yang–Abdel–Cattani Derivative Operator. Fractal Fract. 2021, 5, 64. [Google Scholar] [CrossRef]
- Luchko, Y.; Yamamoto, M. General time-fractional diffusion equation: Some uniqueness and existence results for the initial boundary value problems. Fract. Calc. Appl. Anal. 2016, 19, 676–695. [Google Scholar] [CrossRef]
- Agrawal, O.P. Generalized variational problems and Euler- Lagrange equations. Comput. Math. Appl. 2010, 59, 1852–1864. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Caputo, M.; Fabrizio, M. On the singular kernels for fractional derivatives. Some applications to partial differential equations. Prog. Fract. Differ. Appl. 2021, 7, 79–82. [Google Scholar]
- Losada, J.; Nieto, J.J. Fractional integral associated with fractional derivatives with nonsingular kernels. Prog. Fract. Differ. Appl. 2021, 7, 137–143. [Google Scholar]
- Elbeleze, A.A.; Kilicman, A.; Taib, B.M. Note on the Convergence Analysis of Homotopy Perturbation Method for Fractional Partial Differential Equations. Abstr. Appl. Anal. 2014, 2014, 803902. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Kiliçman, A. Homotopy perturbation method for fractional gas dynamics equation using Sumudu transform. Abstr. Appl. Anal. 2013, 2013, 934060. [Google Scholar] [CrossRef]
- Chawla, R.; Deswal, K.; Kumar, D.; Baleanu, D. Numerical Simulation for Generalized Time-Fractional Burgers’ Equation with Three Distinct Linearization Schemes. J. Comput. Nonlinear Dyn. 2023, 1–16. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mohammed, P.O.; Guirao, J.L.G.; Baleanu, D.; Al-Sarairah, E.; Jan, R. A Study of Positivity Analysis for Difference Operators in the Liouville–Caputo Setting. Symmetry 2023, 15, 391. [Google Scholar] [CrossRef]
- Veeresha, P.; Ilhan, E.; Prakasha, D.G.; Baskonus, H.M.; Gao, W. A new numerical investigation of fractional order susceptible-infected-recovered epidemic model of childhood disease. Alex. Eng. J. 2022, 61, 1747–1756. [Google Scholar] [CrossRef]
- Shrahili, M.; Dubey, R.S.; Shafay, A. Inclusion of Fading Memory to Banister Model of Changes In Physical Condition. Discret. Contin. Dyn. Syst. Ser. S 2020, 13, 881–888. [Google Scholar] [CrossRef]
- Bohner, M.; Tunç, O.; Tunç, C. Qualitative analysis of caputo fractional integro-differential equations with constant delays. Comput. Appl. Math. 2021, 40, 214. [Google Scholar] [CrossRef]
- Tunç, O.; Tunç, C. Solution estimates to Caputo proportional fractional derivative delay integro-differential equations. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 2023, 117, 12. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, A.M. Solution of the Generalized Burgers Equation Using Homotopy Perturbation Method with General Fractional Derivative. Symmetry 2023, 15, 634. https://doi.org/10.3390/sym15030634
Alqahtani AM. Solution of the Generalized Burgers Equation Using Homotopy Perturbation Method with General Fractional Derivative. Symmetry. 2023; 15(3):634. https://doi.org/10.3390/sym15030634
Chicago/Turabian StyleAlqahtani, Awatif Muflih. 2023. "Solution of the Generalized Burgers Equation Using Homotopy Perturbation Method with General Fractional Derivative" Symmetry 15, no. 3: 634. https://doi.org/10.3390/sym15030634
APA StyleAlqahtani, A. M. (2023). Solution of the Generalized Burgers Equation Using Homotopy Perturbation Method with General Fractional Derivative. Symmetry, 15(3), 634. https://doi.org/10.3390/sym15030634