Numerical Analysis of the Time-Fractional Boussinesq Equation in Gradient Unconfined Aquifers with the Mittag-Leffler Derivative
Abstract
1. Introduction
2. Preliminaries
3. Methodology of ADTM
4. Methodology of VITM
5. Applications
5.1. Example
5.2. Example
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Dong, Z.; Wang, L.; Niu, X.; Yamaguchi, H.; Li, D.; Zhang, J.; Yu, P. A Magnetic Field Coupling Fractional Step Lattice Boltzmann Model for the Complex Interfacial Behavior in Magnetic Multiphase Flows. Appl. Math. Model. 2023, 117, 219–250. [Google Scholar] [CrossRef]
- Sun, L.; Hou, J.; Xing, C.; Fang, Z. A Robust Hammerstein-Wiener Model Identification Method for Highly Nonlinear Systems. Processes 2022, 10, 2664. [Google Scholar] [CrossRef]
- Cao, Y.; Nikan, O.; Avazzadeh, Z. A Localized Meshless Technique for Solving 2D Nonlinear Integro-Differential Equation with Multi-Term Kernels. Appl. Numer. Math. 2023, 183, 140–156. [Google Scholar] [CrossRef]
- Xie, X.; Wang, T.; Zhang, W. Existence of Solutions for the (p,q)-Laplacian Equation with Nonlocal Choquard Reaction. Appl. Math. Lett. 2023, 135, 108418. [Google Scholar] [CrossRef]
- Hu, Y.; Qing, J.X.; Liu, Z.H.; Conrad, Z.J.; Cao, J.N.; Zhang, X.P. Hovering Efficiency Optimization of the Ducted Propeller with Weight Penalty Taken into Account. Aerosp. Sci. Technol. 2021, 117, 106937. [Google Scholar] [CrossRef]
- Oderinu, R.A.; Owolabi, J.A.; Taiwo, M. Approximate Solutions of Linear Time-Fractional Differential Equations. J. Math. Comput. Sci. 2023, 29, 60–72. [Google Scholar] [CrossRef]
- Jin, H.Y.; Wang, Z. Asymptotic Dynamics of the One-Dimensional Attraction-Repulsion Keller-Segel Model. Math. Meth. Appl. Sci. 2015, 38, 444–457. [Google Scholar] [CrossRef]
- Rahman, Z.A.; Harun-Or-Roshid; Ali, M.Z. Novel Precise Solitary Wave Solutions of Two Time Fractional Nonlinear Evolution Models via the MSE Scheme. Fractal Fract. 2022, 6, 444. [Google Scholar] [CrossRef]
- Asjad, M.I.; Ullah, N.; Rehman, H.; Baleanu, D. Optical Solitons for Conformable Space-Time Fractional Nonlinear Model. J. Math. Comput. Sci. 2022, 27, 28. [Google Scholar] [CrossRef]
- Ullah, M.S.; Abdeljabbar, A.; Roshid, H.; Ali, M.Z. Application of the Unified Method to Solve the Biswas-Arshed Model. Results Phys. 2022, 42, 105946. [Google Scholar] [CrossRef]
- Jin, H.; Wang, Z. Boundedness, Blowup and Critical Mass Phenomenon in Competing Chemotaxis. J. Differ. Equ. 2016, 260, 162–196. [Google Scholar] [CrossRef]
- Al-Habahbeh, A. Exact Solution for Commensurate and Incommensurate Linear Systems of Fractional Differential Equations. J. Math. Comput. Sci. 2023, 28, 123–136. [Google Scholar] [CrossRef]
- Cheng, M.; Cui, Y.; Yan, X.; Zhang, R.; Wang, J.; Wang, X. Effect of Dual-Modified Cassava Starches on Intelligent Packaging Films Containing Red Cabbage Extracts. Food Hydrocoll. 2022, 124, 107225. [Google Scholar] [CrossRef]
- He, H.M.; Peng, J.G.; Li, H.Y. Iterative Approximation of Fixed Point Problems and Variational Inequality Problems on Hadamard Manifolds. UPB Bull. Ser. A 2022, 84, 25–36. [Google Scholar]
- Yuan, Q.; Kato, B.; Fan, K.; Wang, Y. Phased Array Guided Wave Propagation in Curved Plates. Mech. Syst. Signal Process. 2023, 185, 109821. [Google Scholar] [CrossRef]
- Islam, Z.; Abu Naim Sheikh, M.; Harun-Or-Roshid; Taher, M.A. Optical Solitons to the Fractional Order Nonlinear Complex Model for Wave Packet Envelope. Results Phys. 2022, 43, 106095. [Google Scholar] [CrossRef]
- Kilbas, A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; World Scientific: Singapore, 2010. [Google Scholar]
- Liu, L.; Zhang, S.; Zhang, L.; Pan, G.; Yu, J. Multi-UUV Maneuvering Counter-Game for Dynamic Target Scenario Based on Fractional-Order Recurrent Neural Network. IEEE Trans. Cybern. 2022, 1–14. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Li, X. Numerical solution of the fractional Boussinesq equation by the combination of the homotopy analysis method and the Adomian decomposition method. Math. Methods Appl. Sci. 2018, 41, 1226–1237. [Google Scholar]
- Cai, Y.; Huang, W.J.; Li, S. A new spectral-homotopy analysis method for the fractional Boussinesq equation. Chaos Solitons Fractals 2017, 101, 23–31. [Google Scholar]
- Jin, H.Y.; Wang, Z.A. Global Stabilization of the Full Attraction-Repulsion Keller-Segel System. Discrete Contin. Dyn. Syst. A 2020, 40, 3509–3527. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Lai, Y.G.; Liu, H.B. Analytical and numerical solutions of the fractional Boussinesq equation based on the combination of the Adomian decomposition method and the homotopy analysis method. Nonlinear Dyn. 2017, 89, 767–777. [Google Scholar]
- Najafizadeh, K.; Dehghan, M. Exact solutions for the fractional Boussinesq equation using the homotopy perturbation method. J. Nonlinear Math. Phys. 2016, 23, 305–316. [Google Scholar]
- Liu, P.; Shi, J.; Wang, Z.-A. Pattern Formation of the Attraction-Repulsion Keller-Segel System. Discrete Contin. Dyn. Syst. B 2013, 18, 2597–2625. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.A. Numerical solutions of fractional Boussinesq equation by homotopy analysis method. J. Vib. Control. 2016, 22, 296–306. [Google Scholar]
- Alharbi, N.A. Numerical solutions of fractional Boussinesq equation by homotopy analysis transform method. Commun. Nonlinear Sci. Numer. Simul. 2015, 24, 526–534. [Google Scholar]
- He, J. Variational Iteration Method—A Kind of Non-linear Analytical Technique: Some Examples. Int. J. Nonlinear Sci. Numer. Simul. 1999, 34, 699–708. [Google Scholar] [CrossRef]
- He, J. Variational iteration method for nonlinear problems. Int. J. Mod. Phys. B. 2005. [Google Scholar]
- Al-Shomrani, M.A.; Al-Said, A.A. Variational Iteration Transform Method for Solving Nonlinear Partial Differential Equations. World Acad. Sci. Eng. Technol. 2009, 3, 10–17. [Google Scholar]
- He, J.; Xu, X. Variational iteration method for solving nonlinear wave equations. Int. J. Nonlinear Sci. Numer. Simul. 2010, 54, 926–932. [Google Scholar]
- He, J.H.; Wu, X. Variational iteration method for solving fractional partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 855–862. [Google Scholar]
- Liu, Y.; Huang, J.A. Novel variational iteration method for solving fractional partial differential equations. J. Comput. Appl. Math. 2015, 284, 1–10. [Google Scholar] [CrossRef]
- Zhang, X.F.; Wang, Y. A new approach to solving fractional partial differential equations by variational iteration method. J. Comput. Phys. 2017, 340, 72–83. [Google Scholar]
- Chen, Y.Q.; Zhang, Y. A new variational iteration method for solving fractional partial differential equations with variable coefficients. J. Comput. Appl. Math. 2018, 339, 88–96. [Google Scholar]
- Wang, Y.Y.; Liu, J. Variational iteration method for solving fractional partial differential equations with boundary conditions. J. Comput. Phys. 2019, 389, 1–10. [Google Scholar] [CrossRef]
- Islam, S.M.R.; Islam, M.S.; Alim, M.A. Adomain decomposition transform method for solving fractional partial differential equations. Appl. Math. Model. 2015, 39, 5897–5910. [Google Scholar]
- Almeida, R.A.; Oliveira, A.L.P.; Tenreiro Machado, J.A. Adomain decomposition transform method for solving time-fractional diffusion equations. J. Comput. Appl. Math. 2012, 236, 5051–5061. [Google Scholar]
- Islam, M.S.; Alim, M.A. Adomain decomposition transform method for solving space-fractional diffusion equations. J. Comput. Phys. 2017, 338, 1–13. [Google Scholar]
- Alim, M.A.; Islam, M.S.; Islam, S.M.R. Adomain decomposition transform method for solving coupled fractional partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2019, 75, 201–216. [Google Scholar]
- Aboodh, K.S. Application of new transform “Aboodh Transform” to partial differential equations. Glob. J. Pure Appl. Math. 2014, 10, 249–254. [Google Scholar]
- Aboodh, K.S. Solving fourth order parabolic PDE with variable coefficients using Aboodh transform homotopy perturbation method. Pure Appl. Math. J. 2015, 4, 219–224. [Google Scholar] [CrossRef]
- Jena, R.M.; Chakraverty, S.; Baleanu, D.; Alqurashi, M.M. New aspects of ZZ transform to fractional operators with Mittag-Leffler kernel. Front. Phys. 2020, 8, 352. [Google Scholar] [CrossRef]
- Riabi, L.; Belghaba, K.; Cherif, M.H.; Ziane, D. Homotopy perturbation method combined with ZZ transform to solve some nonlinear fractional differential equations. Int. J. Anal. Appl. 2019, 17, 406–419. [Google Scholar]
- Zafar, Z.U.A. Application of ZZ transform method on some fractional differential equations. Int. J. Adv. Eng. Global Technol. 2016, 4, 1355–1363. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Rashid, S.; Kubra, K.T.; Jafari, H.; Lehre, S.U. A semi analytical approach for fractional order Boussinesq equation in a gradient unconfined aquifers. Math. Methods Appl. Sci. 2022, 45, 1033–1062. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhtar, S. Numerical Analysis of the Time-Fractional Boussinesq Equation in Gradient Unconfined Aquifers with the Mittag-Leffler Derivative. Symmetry 2023, 15, 608. https://doi.org/10.3390/sym15030608
Mukhtar S. Numerical Analysis of the Time-Fractional Boussinesq Equation in Gradient Unconfined Aquifers with the Mittag-Leffler Derivative. Symmetry. 2023; 15(3):608. https://doi.org/10.3390/sym15030608
Chicago/Turabian StyleMukhtar, Safyan. 2023. "Numerical Analysis of the Time-Fractional Boussinesq Equation in Gradient Unconfined Aquifers with the Mittag-Leffler Derivative" Symmetry 15, no. 3: 608. https://doi.org/10.3390/sym15030608
APA StyleMukhtar, S. (2023). Numerical Analysis of the Time-Fractional Boussinesq Equation in Gradient Unconfined Aquifers with the Mittag-Leffler Derivative. Symmetry, 15(3), 608. https://doi.org/10.3390/sym15030608