A Novel Radio Geometric Mean Algorithm for a Graph
Abstract
:1. Introduction
- (1)
- A radio geometric mean labeling type of a connected graph is an injective function from the vertex set, , to the set of natural numbers , to achieve that for any two distinct vertices and in , the value of is always less than or equal to an integer number , which is called a radio geometric mean labeling of , where denotes the distance between the two vertices and in and indicates the diameter of . The study of paths and cycles s receives a lot of study and research, and it is of utmost importance in graph theory;
- (2)
- The authors discovered the radio geometric mean number of some star-like graphs.
2. Main Results
2.1. Radio Geometric Means for Paths
2.2. Radio Geometric Means for Cycles
3. A New Graph Radio Geometric Mean Algorithm
Algorithm 1. Finding an upper bound of the radio geometric mean number of a graph . |
Input: Let G be an -vertex graph, a simple connected graph and the diameter of G (diam) be known; Output: An upper bound of the radio geometric mean number of ; Begin; Step 1: Select a vertex and Step 2: ; Step 3: For all , calculate, ; Step 4: Let ; Step 5: Select a vertex . Such that ; Step 6: Give ; Step 7: ; Step 8: Steps 3–6 should be repeated until all the vertexes are labeled; Step 9: Steps 1–7 should be repeated for each ; End. |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hale, W.K. Frequency assignment: Theory and applications. Proc. IEEE 1980, 68, 1497–1514. [Google Scholar] [CrossRef]
- Chartrand, G.; Erwin, D.; Zhang, P.; Harary, F. Radio labelings of graphs. Bull. Inst. Combin. Appl. 2001, 33, 77–85. [Google Scholar]
- Zhang, P. Radio labelings of cycles. Ars Combin. 2002, 65, 21–32. [Google Scholar]
- Liu, D.; Zhu, X. Multi-level distance labelings for paths and cycles. SIAM J. Discret. Math. 2005, 19, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Badr, E.M.; Moussa, M.I. An upper bound of radio k-coloring problem and its integer linear programming mode. Wirel. Netw. 2020, 26, 4955–4964. [Google Scholar] [CrossRef]
- Saha, L.; Panigrahi, P. A graph radio k-coloring algorithm. In Combinatorial Algorithms (IWOCA 2012); Arumugan, S., Smyth, W.F., Eds.; Lecture Notes in Computer Science; Springe: Berlin/Heidelberg, Germany, 2012; Volume 7643. [Google Scholar]
- Saha, L.; Panigrahi, P. A new graph radio k-coloring algorithm. Discret. Math. Algorithms Appl. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Ponraja, R.; Narayanana, S.S.; Kalab, R. Radio mean labeling of a graph. AKCE Int. J. Graphs Comb. 2015, 12, 224–228. [Google Scholar] [CrossRef]
- Ponraja, R.; Narayanan, S.S. On Radio Mean Number of Some Graphs. Int. J. Math. Combin. 2014, 3, 41–48. [Google Scholar]
- Sunitha, K.; Raj, C.D.; Subramanian, A. Radio mean labeling of Path and Cycle related graphs. Glob. J. Math. Sci. Theory Pract. 2017, 9, 337–345. [Google Scholar]
- Ponraj, R.; Narayanan, S.S.; Kala, R. Radio mean number of some wheel related graphs. Jordan J. Math. Stat. (JJMS) 2014, 7, 273–286. [Google Scholar]
- Badr, E.; Almotairi, S.; Elrokh, A.; Abdel-Hay, A.; Almutairi, B. An Integer Linear Programming Model for Solving Radio Mean Labeling Problem. IEEE Access 2020, 8, 162343–162349. [Google Scholar] [CrossRef]
- Ramesh, D.; Subramanian, A.; Sunitha, K. Radio Mean Square Labeling of Some Graphs. Int. J. Math. Trends Technol. (IJMTT) 2016, 38, 99–105. [Google Scholar] [CrossRef]
- Hemalatha, V.; Mohanaselvi, V.; Amuthavalli, K. Radio Geometric Mean Labeling of Some Star Like Graphs. J. Inform. Math. Sci. 2017, 9, 969–977. [Google Scholar]
- Hemalatha, V.; Mohanaselvi, V. Radio geometric mean number of some subdivision graphs. Int. J. Pure Appl. Math. 2017, 113, 362–374. [Google Scholar]
- Hemalatha, V.; Mohanaselvi, V.; Amuthavalli, K. Radio Geometric mean number of splitting graph of Star and Bistar. Int. J. Res. Advent Technol. 2018, 6, 1696–1700. [Google Scholar]
- Ahmad, A.; Haider, A. Computing the radio labeling associated with zero divisor graph of a commutative ring. UPB Sci. Bull. Ser. A 2019, 81, 65–72. [Google Scholar]
- Bantva, D. Radio number for middle graph of paths. Electron. Notes Discret. Math. 2017, 63, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Nazeer, S.; Habib, M.; Zia, T.; Ren, Z. Radio number for generalized petersen graphs P(n; 2). IEEE Access 2019, 7, 142000–142008. [Google Scholar] [CrossRef]
- Moussa, M.; Badr, E.M. Ladder and Subdivision of Ladder graphs with pendant edges are odd graceful. arXiv 2016, arXiv:1604.02347. [Google Scholar]
- ELrokh, A.; Al-Shamiri, M.M.A.; Nada, S.; El-hay, A.A. Cordial and Total Cordial Labeling of Corona Product of Paths and Second Order of Lemniscate Graphs. J. Math. 2022, 2022, 8521810. [Google Scholar] [CrossRef]
- Nada, S.; Elrokh, A.; El-hay, A.A. On singed product cordial of cone graph and its second power. Turk. J. Comput. Math. Educ. (TURCOMAT) 2022, 13, 597–606. [Google Scholar]
- El-hay, A.A.; Rabie, A. Signed Product Cordial labeling of Corona Product between Paths and Second Power of Fan Graphs. Ital. J. Pure Appl. Math. 2022, 48, 287–294. [Google Scholar]
- Nada, S.; El-hay, A.A.; Elrokh, A. Total cordial labeling of corona product of paths and second power of fan graph. Turk. J. Comput. Math. Educ. (TURCOMAT) 2022, 13, 681–690. [Google Scholar]
- ELrokh, A.; Al-Shamiri, M.M.A.; El-hay, A.A. A Novel Problem to Solve the Logically Labeling of Corona between Paths and Cycles. J. Math. 2022, 2022, 2312206. [Google Scholar] [CrossRef]
- Slamin, S.; Adiwijaya, N.O.; Hasan, M.A.; Dafik, D.; Wijaya, K. Local Super Antimagic Total Labeling for Vertex Coloring of Graphs. Symmetry 2020, 12, 1843. [Google Scholar] [CrossRef]
- Ghanem, M.; Al-Ezeh, H.; Dabbour, A. Locating Chromatic Number of Powers of Paths and Cycles. Symmetry 2019, 11, 389. [Google Scholar] [CrossRef] [Green Version]
- Staš, M. On the Crossing Numbers of the Join Products of Six Graphs of Order Six with Paths and Cycles. Symmetry 2021, 13, 2441. [Google Scholar] [CrossRef]
- Wang, H.; Kim, H.K. Signed Domination Number of the Directed Cylinder. Symmetry 2019, 11, 1443. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Tian, Y. The g-Extra Connectivity of the Strong Product of Paths and Cycles. Symmetry 2022, 14, 1900. [Google Scholar] [CrossRef]
CPU | Intel (R) Core (TM) i5-2430U CPU@2.40 GHz) |
---|---|
RAM Size | 4 GB RAM |
MATLAB version | R2018a (9.4.0.813654) |
Paths | Cycles | |||||
---|---|---|---|---|---|---|
n | Standard RGM | Proposed Algorithm | Standard RGM | Proposed Algorithm | ||
rgmn(Pn) | CPU Time | rgmn(Cn) | CPU Time | |||
1 | 1 | - | - | - | - | - |
2 | 2 | 2 | 0.006218 | - | - | - |
3 | 3 | 3 | 0.002032 | 3 | 3 | 0.0002965 |
4 | 5 | 5 | 0.000326 | 4 | 4 | 0.0004289 |
5 | 6 | 6 | 0.001283 | 5 | 5 | 0.0007612 |
6 | 8 | 8 | 0.001961 | 6 | 6 | 0.001869 |
7 | 10 | 10 | 0.00403 | 7 | 7 | 0.003384 |
8 | 12 | 12 | 0.007533 | 9 | 9 | 0.003956 |
9 | 14 | 14 | 0.008089 | 10 | 10 | 0.005045 |
10 | 16 | 16 | 0.013975 | 12 | 12 | 0.006979 |
11 | 18 | 18 | 0.01105 | 13 | 13 | 0.009726 |
12 | 20 | 20 | 0.015964 | 15 | 15 | 0.016311 |
13 | 22 | 22 | 0.016252 | 16 | 16 | 0.020546 |
14 | 24 | 24 | 0.020594 | 18 | 18 | 0.042627 |
15 | 26 | 26 | 0.039209 | 19 | 19 | 0.04193 |
16 | 28 | 28 | 0.043435 | 21 | 21 | 0.044663 |
17 | 30 | 30 | 0.060237 | 22 | 22 | 0.062776 |
18 | 32 | 32 | 0.053166 | 24 | 24 | 0.0729 |
19 | 34 | 34 | 0.065707 | 25 | 25 | 0.102526 |
20 | 36 | 36 | 0.080248 | 27 | 27 | 0.108967 |
21 | 38 | 38 | 0.097369 | 28 | 28 | 0.146018 |
22 | 40 | 40 | 0.11666 | 30 | 30 | 0.126386 |
23 | 42 | 42 | 0.138594 | 31 | 31 | 0.155682 |
24 | 44 | 44 | 0.173809 | 33 | 33 | 0.18924 |
25 | 46 | 46 | 0.193142 | 34 | 34 | 0.212628 |
26 | 48 | 48 | 0.225838 | 36 | 36 | 0.368085 |
27 | 50 | 50 | 0.258798 | 37 | 37 | 0.449963 |
28 | 52 | 52 | 0.302328 | 39 | 39 | 0.589237 |
29 | 54 | 54 | 0.345496 | 40 | 40 | 0.654655 |
30 | 56 | 56 | 0.400023 | 42 | 42 | 0.839791 |
50 | 96 | 96 | 3.5304817 | 72 | 72 | 2.8864912 |
Stars | Bistars | |||||||
---|---|---|---|---|---|---|---|---|
n | Number of Vertices | Standard RGM | Proposed Algorithm | Number of Vertices | Standard RGM | Proposed Algorithm | ||
CPU Time | CPU Time | |||||||
1 | 2 | 2 | 2 | 0.0020687 | 4 | 5 | 5 | 0.0029455 |
2 | 3 | 3 | 3 | 0.0030152 | 6 | 6 | 6 | 0.0050051 |
3 | 4 | 4 | 4 | 0.0030554 | 8 | 8 | 8 | 0.0077476 |
4 | 5 | 5 | 5 | 0.0031072 | 10 | 10 | 10 | 0.0162649 |
5 | 6 | 6 | 6 | 0.0047009 | 12 | 12 | 12 | 0.0270769 |
6 | 7 | 7 | 7 | 0.005181 | 14 | 14 | 14 | 0.0344096 |
7 | 8 | 8 | 8 | 0.005945 | 16 | 16 | 16 | 0.0639565 |
8 | 9 | 9 | 9 | 0.0076537 | 18 | 18 | 18 | 0.0851445 |
9 | 10 | 10 | 10 | 0.0099313 | 20 | 20 | 20 | 0.1094354 |
10 | 11 | 11 | 11 | 0.020052 | 22 | 22 | 22 | 0.1426846 |
11 | 12 | 12 | 12 | 0.0255199 | 24 | 24 | 24 | 0.1986474 |
12 | 13 | 13 | 13 | 0.0331355 | 26 | 26 | 26 | 0.2558788 |
13 | 14 | 14 | 14 | 0.0358719 | 28 | 28 | 28 | 0.3395264 |
14 | 15 | 15 | 15 | 0.0565693 | 30 | 30 | 30 | 0.4030834 |
15 | 16 | 16 | 16 | 0.0688593 | 32 | 32 | 32 | 0.4804848 |
16 | 17 | 17 | 17 | 0.0876509 | 34 | 34 | 34 | 0.6043567 |
17 | 18 | 18 | 18 | 0.0940411 | 36 | 36 | 36 | 0.7527568 |
18 | 19 | 19 | 19 | 0.1133618 | 38 | 38 | 38 | 0.9098608 |
19 | 20 | 20 | 20 | 0.1243284 | 40 | 40 | 40 | 1.0976991 |
20 | 21 | 21 | 21 | 0.1514262 | 42 | 42 | 42 | 1.3303740 |
21 | 22 | 22 | 22 | 0.1617064 | 44 | 44 | 44 | 1.5555509 |
22 | 23 | 23 | 23 | 0.1791063 | 46 | 46 | 46 | 1.8556716 |
23 | 24 | 24 | 24 | 0.1936942 | 48 | 48 | 48 | 2.1834102 |
24 | 25 | 25 | 25 | 0.2197022 | 50 | 50 | 50 | 2.5481004 |
25 | 26 | 26 | 26 | 0.2436268 | 52 | 52 | 52 | 2.9699905 |
26 | 27 | 27 | 27 | 0.2750292 | 54 | 54 | 54 | 3.7919474 |
27 | 28 | 28 | 28 | 0.3269645 | 56 | 56 | 56 | 4.1813628 |
28 | 29 | 29 | 29 | 0.352134 | 58 | 58 | 58 | 4.9736259 |
29 | 30 | 30 | 30 | 0.4196667 | 60 | 60 | 60 | 5.5554632 |
30 | 31 | 31 | 31 | 0.4664257 | 62 | 62 | 62 | 6.7576094 |
50 | 51 | 51 | 51 | 2.8473028 | 102 | 102 | 102 | 56.809173 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
ELrokh, A.; Al-Shamiri, M.M.A.; Abd El-hay, A. A Novel Radio Geometric Mean Algorithm for a Graph. Symmetry 2023, 15, 570. https://doi.org/10.3390/sym15030570
ELrokh A, Al-Shamiri MMA, Abd El-hay A. A Novel Radio Geometric Mean Algorithm for a Graph. Symmetry. 2023; 15(3):570. https://doi.org/10.3390/sym15030570
Chicago/Turabian StyleELrokh, Ashraf, Mohammed M. Ali Al-Shamiri, and Atef Abd El-hay. 2023. "A Novel Radio Geometric Mean Algorithm for a Graph" Symmetry 15, no. 3: 570. https://doi.org/10.3390/sym15030570
APA StyleELrokh, A., Al-Shamiri, M. M. A., & Abd El-hay, A. (2023). A Novel Radio Geometric Mean Algorithm for a Graph. Symmetry, 15(3), 570. https://doi.org/10.3390/sym15030570