Correlation of Neutrinoless Double-β Decay Nuclear Matrix Element with E2 Strength
Abstract
1. Introduction
2. The Model
3. Calculations and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Neutrinoless double- decay | |
NME | Nuclear matrix element |
E2 | Electric quadrupole |
ISM | Interacting shell model |
IBM | Interacting boson method |
QRPA | Quasiparticle random phase approximation |
GCM | Generator-coordinate method |
EDF | Energy density functional |
IM-GCM | In-medium generator-coordinate method |
CC | Coupled-cluster method |
HFB | Hartree-Fock-Bogliubov |
IM-SRG | In-medium similarity renormalization group |
GT | Gamow-Teller |
SRC | Short range correlation |
References
- Avignone, F.T.; Elliott, S.R.; Engel, J. Double beta decay, Majorana neutrinos, and neutrino mass. Rev. Mod. Phys. 2008, 80, 481–516. [Google Scholar] [CrossRef]
- Caurier, E.; Menéndez, J.; Nowacki, F.; Poves, A. Influence of Pairing on the Nuclear Matrix Elements of the Neutrinoless ββ Decays. Phys. Rev. Lett. 2008, 100, 052503. [Google Scholar] [CrossRef]
- Menéndez, J.; Poves, A.; Caurier, E.; Nowacki, F. Disassembling the nuclear matrix elements of the neutrinoless ββ decay. Nucl. Phys. A 2009, 818, 139–151. [Google Scholar] [CrossRef]
- Horoi, M.; Stoica, S. Shell model analysis of the neutrinoless double-β decay of 48Ca. Phys. Rev. C 2010, 81, 024321. [Google Scholar] [CrossRef]
- Horoi, M. Shell model analysis of competing contributions to the double-β decay of 48Ca. Phys. Rev. C 2013, 87, 014320. [Google Scholar] [CrossRef]
- Horoi, M.; Brown, B.A. Shell-Model Analysis of the 136Xe Double Beta Decay Nuclear Matrix Elements. Phys. Rev. Lett. 2013, 110, 222502. [Google Scholar] [CrossRef]
- Neacsu, A.; Horoi, M. Shell model studies of the 130Te neutrinoless double-β decay. Phys. Rev. C 2015, 91, 024309. [Google Scholar] [CrossRef]
- Horoi, M.; Neacsu, A. Shell model predictions for 124Sn double-β decay. Phys. Rev. C 2016, 93, 024308. [Google Scholar] [CrossRef]
- Iwata, Y.; Shimizu, N.; Otsuka, T.; Utsuno, Y.; Menéndez, J.; Honma, M.; Abe, T. Large-Scale Shell-Model Analysis of the Neutrinoless ββ Decay of 48Ca. Phys. Rev. Lett. 2016, 116, 112502. [Google Scholar] [CrossRef]
- Sen’kov, R.A.; Horoi, M. Shell-model calculation of neutrinoless double-β decay of 76Ge. Phys. Rev. C 2016, 93, 044334. [Google Scholar] [CrossRef]
- Barea, J.; Kotila, J.; Iachello, F. Limits on Neutrino Masses from Neutrinoless Double-β Decay. Phys. Rev. Lett. 2012, 109, 042501. [Google Scholar] [CrossRef]
- Barea, J.; Kotila, J.; Iachello, F. Nuclear matrix elements for double-β decay. Phys. Rev. C 2013, 87, 014315. [Google Scholar] [CrossRef]
- Barea, J.; Kotila, J.; Iachello, F. 0νββ and 2νββ nuclear matrix elements in the interacting boson model with isospin restoration. Phys. Rev. C 2015, 91, 034304. [Google Scholar] [CrossRef]
- Šimkovic, F.; Pantis, G.; Vergados, J.D.; Faessler, A. Additional nucleon current contributions to neutrinoless double β decay. Phys. Rev. C 1999, 60, 055502. [Google Scholar] [CrossRef]
- Rodin, V.A.; Faessler, A.; Šimkovic, F.; Vogel, P. Uncertainty in the 0νββ decay nuclear matrix elements. Phys. Rev. C 2003, 68, 044302. [Google Scholar] [CrossRef]
- Kortelainen, M.; Civitarese, O.; Suhonen, J.; Toivanen, J. Short-range correlations and neutrinoless double beta decay. Phys. Lett. B 2007, 647, 128–132. [Google Scholar] [CrossRef]
- Kortelainen, M.; Suhonen, J. Improved short-range correlations and 0νββ nuclear matrix elements of 76Ge and 82Se. Phys. Rev. C 2007, 75, 051303. [Google Scholar] [CrossRef]
- Šimkovic, F.; Faessler, A.; Rodin, V.; Vogel, P.; Engel, J. Anatomy of the 0νββ nuclear matrix elements. Phys. Rev. C 2008, 77, 045503. [Google Scholar] [CrossRef]
- Šimkovic, F.; Faessler, A.; Müther, H.; Rodin, V.; Stauf, M. 0νββ-decay nuclear matrix elements with self-consistent short-range correlations. Phys. Rev. C 2009, 79, 055501. [Google Scholar] [CrossRef]
- Šimkovic, F.; Faessler, A.; Vogel, P. 0νββ nuclear matrix elements and the occupancy of individual orbits. Phys. Rev. C 2009, 79, 015502. [Google Scholar] [CrossRef]
- Mustonen, M.T.; Engel, J. Large-scale calculations of the double-β decay of 76Ge,130Te,136Xe, and 150Nd in the deformed self-consistent Skyrme quasiparticle random-phase approximation. Phys. Rev. C 2013, 87, 064302. [Google Scholar] [CrossRef]
- Šimkovic, F.; Rodin, V.; Faessler, A.; Vogel, P. 0νββ and 2νββ nuclear matrix elements, quasiparticle random-phase approximation, and isospin symmetry restoration. Phys. Rev. C 2013, 87, 045501. [Google Scholar] [CrossRef]
- Faessler, A.; González, M.; Kovalenko, S.; Šimkovic, F. Arbitrary mass Majorana neutrinos in neutrinoless double beta decay. Phys. Rev. D 2014, 90, 096010. [Google Scholar] [CrossRef]
- Hyvärinen, J.; Suhonen, J. Nuclear matrix elements for 0νββ decays with light or heavy Majorana-neutrino exchange. Phys. Rev. C 2015, 91, 024613. [Google Scholar] [CrossRef]
- Fang, D.L.; Faessler, A.; Šimkovic, F. 0νββ-decay nuclear matrix element for light and heavy neutrino mass mechanisms from deformed quasiparticle random-phase approximation calculations for 76Ge,82Se,130Te,136Xe, and 150Nd with isospin restoration. Phys. Rev. C 2018, 97, 045503. [Google Scholar] [CrossRef]
- Rodríguez, T.R.; Martínez-Pinedo, G. Energy Density Functional Study of Nuclear Matrix Elements for Neutrinoless ββ Decay. Phys. Rev. Lett. 2010, 105, 252503. [Google Scholar] [CrossRef]
- Vaquero, N.L.; Rodríguez, T.R.; Egido, J.L. Shape and Pairing Fluctuation Effects on Neutrinoless Double Beta Decay Nuclear Matrix Elements. Phys. Rev. Lett. 2013, 111, 142501. [Google Scholar] [CrossRef]
- Rodríguez, T.R.; Martínez-Pinedo, G. Neutrinoless ββ decay nuclear matrix elements in an isotopic chain. Phys. Lett. B 2013, 719, 174–178. [Google Scholar] [CrossRef]
- Yao, J.M.; Song, L.S.; Hagino, K.; Ring, P.; Meng, J. Systematic study of nuclear matrix elements in neutrinoless double-β decay with a beyond-mean-field covariant density functional theory. Phys. Rev. C 2015, 91, 024316. [Google Scholar] [CrossRef]
- Yao, J.M.; Engel, J. Octupole correlations in low-lying states of 150Nd and 150Sm and their impact on neutrinoless double-β decay. Phys. Rev. C 2016, 94, 014306. [Google Scholar] [CrossRef]
- Hinohara, N.; Engel, J. Proton-neutron pairing amplitude as a generator coordinate for double-β decay. Phys. Rev. C 2014, 90, 031301. [Google Scholar] [CrossRef]
- Jiao, C.F.; Engel, J.; Holt, J.D. Neutrinoless double-β decay matrix elements in large shell-model spaces with the generator-coordinate method. Phys. Rev. C 2017, 96, 054310. [Google Scholar] [CrossRef]
- Jiao, C.F.; Horoi, M.; Neacsu, A. Neutrinoless double-β decay of 124Sn, 130Te, and 136Xe in the Hamiltonian-based generator-coordinate method. Phys. Rev. C 2018, 98, 064324. [Google Scholar] [CrossRef]
- Jiao, C.F.; Johnson, C.W. Union of rotational and vibrational modes in generator-coordinate-type calculations, with application to neutrinoless double-β decay. Phys. Rev. C 2019, 100, 031303. [Google Scholar] [CrossRef]
- Yao, J.M.; Bally, B.; Engel, J.; Wirth, R.; Rodríguez, T.R.; Hergert, H. Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of 48Ca. Phys. Rev. Lett. 2020, 124, 232501. [Google Scholar] [CrossRef]
- Novario, S.; Gysbers, P.; Engel, J.; Hagen, G.; Jansen, G.R.; Morris, T.D.; Navrátil, P.; Papenbrock, T.; Quaglioni, S. Coupled-Cluster Calculations of Neutrinoless Double-β Decay in 48Ca. Phys. Rev. Lett. 2021, 126, 182502. [Google Scholar] [CrossRef]
- Engel, J.; Menéndez, J. Status and future of nuclear matrix elements for neutrinoless double-beta decay: A review. Rep. Prog. Phys. 2017, 80, 046301. [Google Scholar] [CrossRef] [PubMed]
- Vogel, P. Nuclear structure and double beta decay. J. Phys. G Nucl. Part. Phys. 2012, 39, 124002. [Google Scholar] [CrossRef]
- Yao, J.; Meng, J.; Niu, Y.; Ring, P. Beyond-mean-field approaches for nuclear neutrinoless double beta decay in the standard mechanism. Prog. Part. Nucl. Phys. 2022, 126, 103965. [Google Scholar] [CrossRef]
- Caurier, E.; Nowacki, F.; Poves, A. Nuclear-structure aspects of the neutrinoless ββ-decays. Eur. Phys. J. A 2008, 36, 195–200. [Google Scholar] [CrossRef][Green Version]
- Fang, D.L.; Faessler, A.; Rodin, V.; Šimkovic, F. Neutrinoless double-β decay of deformed nuclei within quasiparticle random-phase approximation with a realistic interaction. Phys. Rev. C 2011, 83, 034320. [Google Scholar] [CrossRef]
- Zelevinsky, V.; Auerbach, N.; Loc, B.M. Nuclear structure features of Gamow-Teller excitations. Phys. Rev. C 2017, 96, 044319. [Google Scholar] [CrossRef]
- Horoi, M.; Neacsu, A.; Stoica, S. Statistical analysis for the neutrinoless double-β-decay matrix element of 48Ca. Phys. Rev. C 2022, 106, 054302. [Google Scholar] [CrossRef]
- Goodman, A.L. Advances in Nuclear Physics. In Advances in Nuclear Physics; Negele, J.V., Vogt, E., Eds.; Plenum Press: New York, NY, USA, 1979; Volume 11, p. 263. [Google Scholar]
- Ring, P.; Schuck, P. The Nuclear Many-Body Problem; Springer: Berlin, Germany, 1980. [Google Scholar]
- Rodríguez, T.R.; Egido, J.L. Triaxial angular momentum projection and configuration mixing calculations with the Gogny force. Phys. Rev. C 2010, 81, 064323. [Google Scholar] [CrossRef]
- Yao, J.M.; Meng, J.; Ring, P.; Vretenar, D. Configuration mixing of angular-momentum-projected triaxial relativistic mean-field wave functions. Phys. Rev. C 2010, 81, 044311. [Google Scholar] [CrossRef]
- Poves, A.; Sánchez-Solano, J.; Caurier, E.; Nowacki, F. Shell model study of the isobaric chains A = 50, A = 51 and A = 52. Nucl. Phys. A 2001, 694, 157–198. [Google Scholar] [CrossRef]
- Gniady, A.; Caurier, E.; Nowacki, F. (unpublised).
- Qi, C.; Xu, Z.X. Monopole-optimized effective interaction for tin isotopes. Phys. Rev. C 2012, 86, 044323. [Google Scholar] [CrossRef]
- Caurier, E.; Martínez-Pinedo, G.; Nowacki, F.; Poves, A.; Zuker, A.P. The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 2005, 77, 427–488. [Google Scholar] [CrossRef]
- Pritychenko, B.; Birch, M.; Singh, B.; Horoi, M. Tables of E2 transition probabilities from the first 2+ states in even–even nuclei. At. Data Nucl. Data Tables 2016, 107, 1–139. [Google Scholar] [CrossRef]
- Bogner, S.K.; Hergert, H.; Holt, J.D.; Schwenk, A.; Binder, S.; Calci, A.; Langhammer, J.; Roth, R. Nonperturbative Shell-Model Interactions from the In-Medium Similarity Renormalization Group. Phys. Rev. Lett. 2014, 113, 142501. [Google Scholar] [CrossRef]
- Hagen, G.; Papenbrock, T.; Hjorth-Jensen, M.; Dean, D.J. Coupled-cluster computations of atomic nuclei. Rep. Prog. Phys. 2014, 77, 096302. [Google Scholar] [CrossRef]
- Stroberg, S.R.; Hergert, H.; Holt, J.D.; Bogner, S.K.; Schwenk, A. Ground and excited states of doubly open-shell nuclei from ab initio valence-space Hamiltonians. Phys. Rev. C 2016, 93, 051301. [Google Scholar] [CrossRef]
- Stroberg, S.R.; Calci, A.; Hergert, H.; Holt, J.D.; Bogner, S.K.; Roth, R.; Schwenk, A. Nucleus-Dependent Valence-Space Approach to Nuclear Structure. Phys. Rev. Lett. 2017, 118, 032502. [Google Scholar] [CrossRef]
- Jansen, G.R.; Schuster, M.D.; Signoracci, A.; Hagen, G.; Navrátil, P. Open sd-shell nuclei from first principles. Phys. Rev. C 2016, 94, 011301. [Google Scholar] [CrossRef]
- Tomoda, T. 0+→2+ neutrinoless ββ decay of 76Ge. Nucl. Phys. A 1988, 484, 635–646. [Google Scholar] [CrossRef]
- Fang, D.L.; Faessler, A. Nuclear matrix elements for the 0νββ(0+→2+) decay of 76Ge within the two-nucleon mechanism. Phys. Rev. C 2021, 103, 045501. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, C.; Yuan, C.; Yao, J. Correlation of Neutrinoless Double-β Decay Nuclear Matrix Element with E2 Strength. Symmetry 2023, 15, 552. https://doi.org/10.3390/sym15020552
Jiao C, Yuan C, Yao J. Correlation of Neutrinoless Double-β Decay Nuclear Matrix Element with E2 Strength. Symmetry. 2023; 15(2):552. https://doi.org/10.3390/sym15020552
Chicago/Turabian StyleJiao, Changfeng, Cenxi Yuan, and Jiangming Yao. 2023. "Correlation of Neutrinoless Double-β Decay Nuclear Matrix Element with E2 Strength" Symmetry 15, no. 2: 552. https://doi.org/10.3390/sym15020552
APA StyleJiao, C., Yuan, C., & Yao, J. (2023). Correlation of Neutrinoless Double-β Decay Nuclear Matrix Element with E2 Strength. Symmetry, 15(2), 552. https://doi.org/10.3390/sym15020552