Solvent Effects and Metal Ion Recognition in Several Azulenyl-Vinyl-Oxazolones
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xin, H.; Gao, X. Application of azulene in constructing organic optoelectronic materials: New tricks for an old dog. ChemPlusChem 2017, 82, 945–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, A.; Amaki, T.; Ishii, A.; Fukuda, K.; Yamasaki, R.; Okamoto, I. Conformational analysis of N-aryl-N-(2-azulenyl)acetamides. Tetrahedron Lett. 2018, 59, 3994–3998. [Google Scholar] [CrossRef]
- Dong, J.X.; Zhang, H.L. Azulene-based organic functional molecules for optoelectronics. Chin. Chem. Lett. 2016, 27, 1097–1104. [Google Scholar] [CrossRef]
- Tao, T.; Fan, Y.; Zhao, J.; Yu, J.; Chen, M.; Huang, W. Reversible alteration of spectral properties for azulene decorated multiphenyl-ethylenes by simple acid base and redox processes. Dye. Pigment. 2019, 164, 346–354. [Google Scholar] [CrossRef]
- Yang, C.C.; Ma, J.Y.; Su, X.; Zheng, X.L.; Chen, H.; He, Y.Y.; Tian, W.Q.; Li, W.Q.; Yang, L. High performance nonlinear materials with simple aromatic hydrocarbons. Flatchem 2022, 33, 100362. [Google Scholar] [CrossRef]
- Damrongrungruang, T.; Rattanayatikul, S.; Sontikan, N.; Wutirak, B.; Teerakapong, A.; Kaewrawang, A. Effect of different irradiation modes of azulene-mediated photodynamic therapy on singlet oxygen and PGE2 formation. Photochem. Photobiol. 2021, 97, 427–434. [Google Scholar] [CrossRef]
- Leino, T.O.; Sieger, P.; Yli-Kauhaluoma, J.; Walen, E.A.A.; Kley, T. The azulene scaffold from a medicinal chemist’s perspective: Physicochemical and in vitro parameters relevant for drug discovery. Eur. J. Med. Chem. 2022, 237, 114379. [Google Scholar] [CrossRef]
- Liu, R.S.H.; Muthyala, R.S.; Wang, X.S.; Asato, A.E.; Wang, P.; Ye, C. Correlation of substituent effects and energy levels of the two lowest excited states of the azulenic chromophore. Org. Lett. 2000, 2, 269–271. [Google Scholar] [CrossRef]
- Murfin, L.C.; Lewis, S.E. Azulene—A bright core for sensing and imaging. Molecules 2021, 26, 353. [Google Scholar] [CrossRef]
- Shevyakov, S.V.; Li, H.; Muthyala, R.; Asato, A.E.; Croney, J.C.; Jameson, D.M.; Liu, R.S.H. Orbital control of the color and excited state properties of formylated and fluorinated derivatives of azulene. J. Phys. Chem. A 2003, 107, 3295–3299. [Google Scholar] [CrossRef]
- Razus, A.C. Azulene moiety as electron reservoir positively charged systems; A short survey. Symmetry 2021, 13, 526. [Google Scholar] [CrossRef]
- Lash, T.D. Out of the blue! Azuliporphyrins and related carbaporphyrinoid systems. Acc. Chem. Res. 2016, 49, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Dias, J.R. Electronic and structural properties of biazulene, terazulene and polyazulenes isomers. J. Phys. Org. Chem. 2007, 20, 395–409. [Google Scholar] [CrossRef]
- Liu, R.S.H. Colorful azulene and its equally colorful derivatives. J. Chem. Educ. 2002, 79, 183–185. [Google Scholar] [CrossRef]
- Ruth, A.A.; Kim, E.K.; Hese, A. The So→S1 cavity ring-down absorption spectrum of jet-cooled azulene dependence of internal conversion on the excess energy. Phys. Chem. Chem. Phys. 1999, 1, 5121–5128. [Google Scholar] [CrossRef]
- Koch, M.; Blacque, O.; Venkatesan, K. Impact of 2,6-connectivity in azulene: Optical properties and stimuli responsive behavior. J. Mater. Chem. C 2013, 1, 7400–7408. [Google Scholar] [CrossRef] [Green Version]
- Foggi, P.; Neuwahl, F.V.R.; Moroni, L.; Salvi, P.R. S1→Sn and S2→Sn absorption of azulene: Femtosecond transient spectra and excited state calculation. J. Phys. Chem. A 2003, 107, 1689–1696. [Google Scholar] [CrossRef]
- Okamoto, M.; Hirayama, S.; Steer, R.P. A reinterpretation of the unsusual barochromism of azulene. Can. J. Chem. 2007, 85, 432–437. [Google Scholar] [CrossRef]
- Itoh, T. Fluorescence and phosphorescence from higher excited states of organic molecules. Chem. Rev. 2012, 112, 4541–4568. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Baryshnikov, G.; Li, X.P.; Zhu, M.J.; Ågren, H.; Zhu, L.L. Anti-Kasha’s rule emissive switching induced by intermolecular H-bonding. Chem. Mater. 2018, 30, 8008–8016. [Google Scholar] [CrossRef]
- Gong, Y.; Zhou, Y.; Yue, B.; Wu, B.; Sun, R.; Qu, S.; Zhu, L. Multiwavelength anti-Kasha’s rule emission on self-assembly of azulene-functionalized persulfurated arene. J. Phys. Chem. C 2019, 123, 22511–22518. [Google Scholar] [CrossRef]
- Homocianu, M.; Airinei, A.; Dorohoi, D.O. Solvent effects on the electronic absorption and fluorescence spectra. J. Adv. Res. Phys. 2011, 2, 011105. [Google Scholar]
- Airinei, A.; Isac, D.I.; Homocianu, M.; Cojocaru, C.; Hulubei, C. Solvatochromic analysis and DFT computational study of an azomaleimide derivative. J. Mol. Liq. 2017, 240, 476–485. [Google Scholar] [CrossRef]
- Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 3rd ed.; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Bakhshiev, N.G. Spectroscopy of Intermolecular Interactions; Nauka: Saint Petersburg, Russia, 1972. (In Russian) [Google Scholar]
- Bakhshiev, N.G.; Gubaryan, S.K.; Dobretsov, G.E.; Kirillova, A.Y.; Svetlichnyi, V.Y. Solvatochromism and solvatofluorochromism of the intramolecular charge transfer band of 4-dimethylaminochalcone in the electronic spectra of its solutions. Opt. Spectrosc. 2006, 100, 700–708. [Google Scholar] [CrossRef]
- Reichardt, C. Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 1994, 94, 2319–2358. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Abboud, J.L.; Taft, R.W. The solvatochromic comparison method. 6. The π* scale of solvent polarities. J. Am. Chem. Soc. 1977, 90, 6027–6038. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Abboud, J.L.; Abraham, M.H.; Taft, R. Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters π*, α and β, and some methods for simplifying the generalized solvatochromic method. J. Org. Chem. 1983, 48, 2877–2887. [Google Scholar] [CrossRef]
- Catalan, J. Toward a generalized treatment of the solvent effect on the empirical scales: Dipolarity (SdP, a new scale), polarizability (SP), acidity (SA) and basicity (SB) of the medium. J. Phys. Chem. B 2009, 113, 5951–5960. [Google Scholar] [CrossRef]
- Catalan, J.; Hopf, H. Empirical components of solute-solvent interactions: The polarizability solvent scale. Eur. J. Org. Chem. 2004, 2004, 4694–4702. [Google Scholar] [CrossRef]
- Laurence, C.; Legros, J.; Chantzis, A.; Phanchat, A.; Jacquemin, D. A database of dispersion-induction DI, electrostatic ES, and hydrogen bonding α1 and β1 solvent-parameters and some applications to the multiparameter correlation analysis of solvent effects. J. Phys. Chem. B 2015, 119, 3174–3184. [Google Scholar] [CrossRef]
- Cristea, M.; Birzan, L.; Dumitrascu, F.; Enache, C.; Tecuceanu, V.; Hanganu, A.; Draghici, C.; Deleanu, C.; Nicolescu, A.; Maganu, M.; et al. 1-Vinylazulenes with oxazolonic ring-potential ligands for metal ion detectors; Synthesis and product properties. Symmetry 2021, 13, 1209. [Google Scholar] [CrossRef]
- Lippert, E. Dipolmoment und Electronenstruktur von angeregten Molekulen. Z. Für Nat. A Phys. Sci. 1955, 10, 541–545. [Google Scholar]
- Mataga, N.; Kaifu, Y.; Koizumi, M. Solvent effects upon fluorescence spectra and dipolmoments of excited states. Bull. Chem. Soc. Jpn. 1956, 29, 465–470. [Google Scholar] [CrossRef] [Green Version]
- Kamlet, M.J.; Abboud, J.L.M.; Taft, R.W. An examination of linear solvation energy relationships. Progr. Phys. Org. Chem. 1981, 13, 485–630. [Google Scholar]
- Marcus, Y. The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev. 1993, 22, 409–416. [Google Scholar] [CrossRef]
- Rauf, M.A.; Hisaindee, S. Studies on solvatochromic behavior of dyes using spectral techniques. J. Mol. Struct. 2013, 1042, 45–56. [Google Scholar] [CrossRef]
- Birzan, L.; Cristea, M.; Draghici, C.C.; Tecuceanu, V.; Maganu, M.; Hanganu, A.; Arnold, G.L.; Ungureanu, E.M.; Razus, A.C. 1-Vinylazulenes–potential host molecules in ligands for metal ion detectors. Tetrahedron 2016, 72, 2316–2326. [Google Scholar] [CrossRef]
- Arnold, G.L.; Lazar, I.G.; Ungureanu, E.M.; Buica, G.O.; Birzan, L. New azulene modified electrodes for heavy metal ions recognition. Bulg. Chem. Commun. 2017, 49, 205–210. [Google Scholar]
- Muravev, A.; Yakupov, A.; Gerasimova, T.; Islamov, D.; Lazarenko, V.; Shokurov, A.; Ovsyannikov, A.; Dorovaovskii, P.; Zubavichus, Y.; Naummkin, A.; et al. Thiacalixarenes with sulfur functionalized at lower rim: Heavy metal ion binding in solution and 2D-confined space. Int. J. Mol. Sci. 2022, 23, 2341. [Google Scholar] [CrossRef]
Solvent | Azulene Derivative | ||||
---|---|---|---|---|---|
O1 | O2 | O3 | O5 | O6 | |
1,4-Dioxane | 21,500 | 20,960 | 20,080 | 20,080 | 20,080 |
CCl4 | 21,459 | 20,790 | 20,000 | 20,000 | 20,000 |
Toluene | 21,321 | 20,703 | 19,920 | 19,920 | 19,920 |
CLF | 21,141 | 20,449 | 19,455 | 19,455 | 19,455 |
EtAc | 21,551 | 20,876 | 20,161 | 20,161 | 20,161 |
DCM | 21,321 | 20,533 | 19,493 | 19,493 | 19,493 |
DCE | 21,186 | 20,576 | 19,841 | 19,841 | 19,841 |
Acetone | 21,459 | 21,321 | 19,723 | 19,723 | 19,723 |
Methanol | 21,321 | 20,491 | 19,569 | 19,569 | 19,569 |
ACN | 21,459 | 20,876 | 19,723 | 19,723 | 19,723 |
DMF | 21,186 | 20,366 | 19,455 | 19,455 | 19,455 |
DMSO | 21,008 | 20,202 | 19,193 | 19,193 | 19,193 |
Method | KAT | Catalan | Laurence | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Solvent | α | β | π | SA | SB | SP | SdP | DI | ES | α1 | β1 |
1,4-Dioxane | 0.0 | 0.37 | 0.55 | 0.000 | 0.444 | 0.737 | 0.312 | 0.77 | 0.36 | 0.00 | 0.44 |
CCl4 | 0.0 | 0.0 | 0.28 | 0.000 | 0.044 | 0.768 | 0.000 | 0.82 | 0.10 | 0.00 | 0.00 |
Toluene | 0.0 | 0.11 | 0.54 | 0.000 | 0.128 | 0.782 | 0.284 | 0.86 | 0.20 | 0.00 | 0.15 |
CLF | 0.44 | 0.0 | 0.58 | 0.047 | 0.071 | 0.783 | 0.614 | 0.80 | 0.40 | 0.20 | 0.00 |
EtAc | 0.0 | 0.45 | 0.54 | 0.000 | 0.525 | 0.674 | 0.535 | 0.71 | 0.51 | 0.00 | 0.52 |
DCM | 0.30 | 0.0 | 0.82 | 0.040 | 0.178 | 0.761 | 0.769 | 0.78 | 0.60 | 0.10 | 0.00 |
DCE | 0.0 | 0.0 | 0.807 | 0.030 | 0.126 | 0.771 | 0.742 | 0.80 | 0.74 | 0.00 | 0.00 |
Acetone | 0.08 | 0.48 | 0.71 | 0.000 | 0.475 | 0.651 | 0.907 | 0.69 | 0.78 | 0.04 | 0.49 |
Methanol | 0.93 | 0.62 | 0.60 | 0.605 | 0.545 | 0.608 | 0.904 | 0.64 | 0.84 | 1.00 | 0.54 |
ACN | 0.19 | 0.31 | 0.75 | 0.044 | 0.286 | 0.645 | 0.974 | 0.67 | 0.84 | 0.23 | 0.37 |
DMF | 0.0 | 0.69 | 0.87 | 0.031 | 0.613 | 0.759 | 0.977 | 0.78 | 0.87 | 0.00 | 0.69 |
DMSO | 0.0 | 0.76 | 1.0 | 0.072 | 0.647 | 0.830 | 1.000 | 0.84 | 1.00 | 0.00 | 0.71 |
Fitting Method | Ligand | y0 × 103 | Correlation Coefficients | R2 | |||
---|---|---|---|---|---|---|---|
KAT | aα | bβ | cπ* | ||||
O1 | 21.70 ± 1.84 | −86.73 ± 1.75 | 56.72 ± 2.17 | −583.31 ± 3.10 | 0.435 | ||
O2 | 20.60 ± 2.29 | −379.22 ± 2.18 | 200.96 ± 2.70 | −1368.62 ± 3.86 | 0.743 | ||
O3 | 21.18 ± 2.52 | −228.32 ± 2.40 | −12.44 ± 2.98 | −790.21 ± 4.25 | 0.498 | ||
O5 | 18.86 ± 2.50 | 376.51 ± 2.31 | 156.34 ± 2.49 | 212.37 ± 3.83 | 0.401 | ||
O6 | 18.09 ± 2.77 | 110.16 ± 2.63 | 429.86 ± 3.27 | −233.94 ± 4.67 | 0.252 | ||
Catalan | aSA | bSB | cSP | dSdP | |||
O1 | 23.39 ± 2.55 | −502.30 ± 1.32 | 85.15 ± 1.00 | −2535.06 ± 3.33 | −308.2 ± 68.26 | 0.943 | |
O2 | 22.70 ± 2.7 | −822.99 ± 1.42 | 400.93 ± 1.07 | −3447.95 ± 3.58 | −846.20 ± 0.73 | 0.980 | |
O3 | 23.48 ± 4.16 | −883.34 ± 2.16 | 44.75 ± 1.63 | −3435.86 ± 5.44 | −431.24 ± 1.11 | 0.928 | |
O5 | 21.35 ± 5.05 | −428.37 ± 2.62 | 415.66 ± 1.98 | −2774.90 ± 6.60 | −484.54 ± 1.35 | 0.861 | |
O6 | 22.14 ± 13.70 | −1377.65 ± 7.1 | 1141.29 ± 5.38 | −5461.76 ± 17.89 | −336.09 ± 3.66 | 0.743 | |
Laurence | aDI | bES | cα1 | dβ1 | |||
O1 | 23.75 ± 4.14 | −2774.5 ± 5.04 | −507.2 ± 1.25 | −305.15 ± 1.14 | 103.52 ± 1.30 | 0.900 | |
O3 | 23.03 ± 5.14 | −3535.5 ± 6.25 | −1322.9 ± 1.5 | −423.99 ± 1.42 | 588.61 ± 1.61 | 0.955 | |
O2 | 23.92 ± 6.83 | −3701.7 ± 830 | −754.3 ± 2.06 | −498.44 ± 1.89 | 137.89 ± 2.14 | 0.871 | |
O5 | 21.61 ± 7.58 | −2869.8 ± 9.21 | −746.93 ± 2.29 | −222.79 ± 2.09 | 480.85 ± 2.37 | 0.792 | |
O6 | 20.28 ± 8.71 | −2796.9 ± 10.58 | −279.95 ± 2.63 | −175.33 ± 2.40 | 447.12 ± 2.73 | 0.742 |
Fitting Method | Ligand | Relative Contribution of Correlation Parameters | Spec.*a (%) | Non-Spec.*b (%) | |||
---|---|---|---|---|---|---|---|
Catalan | SA (%) | SB (%) | SP (%) | SdP (%) | |||
O1 | 14.64 | 2.48 | 73.89 | 8.98 | 17.12 | 82.87 | |
O2 | 14.91 | 7.26 | 62.48 | 15.33 | 22.18 | 77.81 | |
O3 | 18.42 | 0.93 | 71.65 | 8.99 | 19.35 | 80.64 | |
O5 | 10.43 | 10.12 | 67.62 | 11.80 | 20.56 | 79.43 | |
O6 | 16.56 | 13.72 | 65.67 | 4.04 | 30.28 | 69.71 | |
Laurence | DI (%) | ES (%) | α1 (%) | β1 (%) | |||
O1 | 75.18 | 13.74 | 8.26 | 2.80 | 11.07 | 88.92 | |
O2 | 60.21 | 22.53 | 7.22 | 10.02 | 17.24 | 82.75 | |
O3 | 72.69 | 14.81 | 9.78 | 2.70 | 12.49 | 87.50 | |
O5 | 66.42 | 17.28 | 5.15 | 11.12 | 16.28 | 83.71 | |
O6 | 75.60 | 7.56 | 4.73 | 12.08 | 16.82 | 83.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Homocianu, M.; Airinei, A.; Matica, O.-T.; Cristea, M.; Ungureanu, E.-M. Solvent Effects and Metal Ion Recognition in Several Azulenyl-Vinyl-Oxazolones. Symmetry 2023, 15, 327. https://doi.org/10.3390/sym15020327
Homocianu M, Airinei A, Matica O-T, Cristea M, Ungureanu E-M. Solvent Effects and Metal Ion Recognition in Several Azulenyl-Vinyl-Oxazolones. Symmetry. 2023; 15(2):327. https://doi.org/10.3390/sym15020327
Chicago/Turabian StyleHomocianu, Mihaela, Anton Airinei, Ovidiu-Teodor Matica, Mihaela Cristea, and Eleonora-Mihaela Ungureanu. 2023. "Solvent Effects and Metal Ion Recognition in Several Azulenyl-Vinyl-Oxazolones" Symmetry 15, no. 2: 327. https://doi.org/10.3390/sym15020327
APA StyleHomocianu, M., Airinei, A., Matica, O.-T., Cristea, M., & Ungureanu, E.-M. (2023). Solvent Effects and Metal Ion Recognition in Several Azulenyl-Vinyl-Oxazolones. Symmetry, 15(2), 327. https://doi.org/10.3390/sym15020327