Third Hankel Determinant for Subclasses of Analytic and m-Fold Symmetric Functions Involving Cardioid Domain and Sine Function
Abstract
:1. Introduction
- To introduce the novel classes and of bounded turning functions which are subordinated by sine function and cardioid domain.
- To introduce a new class by using m-fold symmetric functions.
- To find the sharp coefficient bounds for functions of the classes and .
- To find the Fekete Szego functional for the classes and .
- To find the upper bounds of the third order Hankel determinant for the classes and .
- To find the upper bounds of the third order Hankel determinant for the class .
2. A Set of Lemmas
3. Main Results
- Thus, we haveThis is our desired bound.
- Equality for the bound given in (35) is obtained by taking□
Bounds of for Twofold Symmetric and Threefold Symmetric Functions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chichra, P.N. New subclasses of the class of close-to-convex functions. Proc. Am. Math. Soc. 1977, 62, 37–43. [Google Scholar] [CrossRef]
- Singh, R.; Singh, S. Convolution properties of a class of starlike functions. Proc. Am. Math. Soc. 1989, 106, 145–152. [Google Scholar] [CrossRef]
- Krzyz, J. A counterexample convcerning univalent functions. Mat. Fiz. Chem. 1962, 2, 57–58. [Google Scholar]
- Noor, K.I.; Khan, N. Some convolution properties of a subclass of p-valent functions. Maejo Int. J. Sci. Technol. 2015, 9, 181–192. [Google Scholar]
- Khan, N.; Khan, B.; Ahmad, Q.Z.; Ahmad, S. Some convolution properties of multivalent analytic functions. AIMS Math. 2017, 2, 260–268. [Google Scholar] [CrossRef]
- Miller, S.S. Differential inequalities and Carathéodory functions. Bull. Am. Math. Soc. 1975, 81, 79–81. [Google Scholar] [CrossRef]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Bieberbach, L. Über die koeffizienten derjenigen potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitz. Preuss. Akad. Wiss. 1916, 138, 940–955. [Google Scholar]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–22 June 1992; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; Conference Proceedings and Lecture Notes in Analysis; International Press: Cambridge, UK, 1994; Volume I, pp. 157–169. [Google Scholar]
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Pol. Math. 1970, 23, 159–177. [Google Scholar] [CrossRef]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat. Fiz. 1996, 19, 101–105. [Google Scholar]
- Arif, M.; Raza, M.; Tang, H.; Hussain, S.; Khan, H. Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Math. 2019, 17, 1615–1630. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with cardioid. Afr. Math. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function. Bull. Sci. Math. 2021, 167, 102942. [Google Scholar] [CrossRef]
- Karthikeyan, K.R.; Murugusundaramoorthy, G.; Purohit, S.D.; Suthar, D.L. Certain class of analytic functions with respect to symmetric points defined by q-calculus. J. Math. 2021, 2021, 8298848. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, A.S.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math Anal. 2007, 1, 619–625. [Google Scholar]
- Shafiq, M.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Darus, M.; Kiran, S. An Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions Associated with k-Fibonacci Numbers. Symmetry 2020, 12, 1043. [Google Scholar] [CrossRef]
- Khan, N.; Shafiq, M.; Darus, M.; Khan, B.; Ahmad, Q.Z. Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions Associated with Lemniscate of Bernoulli. J. Math. Inequal. 2020, 14, 51–63. [Google Scholar] [CrossRef]
- Ullah, N.; Ali, I.; Hussain, S.M.; Ro, J.-S.; Khan, N.; Khan, B. Third Hankel Determinant for a Subclass of Univalent Functions Associated with Lemniscate of Bernoulli. Fractal Fract. 2022, 6, 48. [Google Scholar] [CrossRef]
- Riaz, A.; Raza, M. The third Hankel determinant for starlike and convex functions associated with lune. Bull. Sci. Math. 2023, 187, 103289. [Google Scholar] [CrossRef]
- Khan, M.G.; Ahmad, B.; Murugusundaramoorthy, G.; Mashwani, W.K.; Yalcin, S.; Shaba, T.G.; Salleh, Z. Third Hankel determinant and Zalcman functional for a class of starlike functions with respect to symmetric points related with sine function. J. Math. Comput. Sci. 2022, 25, 29–36. [Google Scholar] [CrossRef]
- Pommerenke, C. On starlike and close-to-convex functions. Proc. Lond. Math. Soc. 1963, 3, 290–304. [Google Scholar] [CrossRef]
- Ehrenborg, R. The Hankel determinant of exponential polynomials. Am. Math. Mon. 2000, 107, 557–560. [Google Scholar] [CrossRef]
- Noor, K.I. On subclasses of close-to-convex functionsof higher order. Int. J. Math. Math. Sci. 1983, 6, 327–334. [Google Scholar] [CrossRef]
- Hayman, W.K. On second Hankel determinant of mean univalent functions. Proc. Lond. Math. Soc. 1968, 18, 77–94. [Google Scholar] [CrossRef]
- Obradović, M.; Tuneski, N. Hankel determinants of second and third order for the class S of univalent functions. Math. Slovaca. 2021, 71, 649–654. [Google Scholar] [CrossRef]
- Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha. J. Math. Inequal. 2017, 11, 429–439. [Google Scholar] [CrossRef]
- Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. The bounds of some determinants for starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. 2018, 41, 523–535. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.A.; Darus, M. Coefficient inequality for a function whose derivative has a positive real part. J. Inequal. Pure Appl. Math. 2006, 7, 50. [Google Scholar]
- Babalola, K.O. On H3(1) Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2010, 6, 1–7. [Google Scholar]
- Zaprawa, P. Third Hankel determinants for subclasses of univalent functions. Mediterr. J. Math. 2017, 14, 19. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math. Sci. Soc. 2019, 42, 767–780. [Google Scholar] [CrossRef]
- Zaprawa, P.; Obradovic, M.; Tuneski, N. Third Hankel determinant for univalent starlike functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2021, 115, 49. [Google Scholar] [CrossRef]
- Sim, Y.J.; Lecko, A.; Thomas, D.K. The second Hankel determinant for strongly convex and Ozaki close-to-convex functions. Ann. Mat. Pura Appl. 2021, 200, 2515–2533. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics. 2019, 7, 181. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kaur, G.; Singh, G. Estimates of the fourth Hankel determinant for a class of analytic functions with bounded turnings involving cardioid domains. J. Nonlinear Convex Anal. 2021, 22, 511–526. [Google Scholar]
- Taj, Y.; Malik, S.N.; Catas, A.; Ro, J.-S.; Tchier, F.; Tawfiq, F.M.O. On Coefficient Inequalities of Starlike Functions Related to the q-Analog of Cosine Functions Defined by the Fractional q-Differential Operator. Fractal Fract. 2023, 7, 782. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions. In Studia Mathematica/Mathematische Lehrbucher; Vandenhoeck & Ruprecht: Gottingen, Germany, 1975; Volume 25. [Google Scholar]
- Keough, F.; Merkes, E. A coefficient inequality for certain subclasses of analytic functions. Proc Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in P. Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alahmade, A.; Mujahid, Z.; Tawfiq, F.M.O.; Khan, B.; Khan, N.; Tchier, F. Third Hankel Determinant for Subclasses of Analytic and m-Fold Symmetric Functions Involving Cardioid Domain and Sine Function. Symmetry 2023, 15, 2039. https://doi.org/10.3390/sym15112039
Alahmade A, Mujahid Z, Tawfiq FMO, Khan B, Khan N, Tchier F. Third Hankel Determinant for Subclasses of Analytic and m-Fold Symmetric Functions Involving Cardioid Domain and Sine Function. Symmetry. 2023; 15(11):2039. https://doi.org/10.3390/sym15112039
Chicago/Turabian StyleAlahmade, Ayman, Zeeshan Mujahid, Ferdous M. O. Tawfiq, Bilal Khan, Nazar Khan, and Fairouz Tchier. 2023. "Third Hankel Determinant for Subclasses of Analytic and m-Fold Symmetric Functions Involving Cardioid Domain and Sine Function" Symmetry 15, no. 11: 2039. https://doi.org/10.3390/sym15112039
APA StyleAlahmade, A., Mujahid, Z., Tawfiq, F. M. O., Khan, B., Khan, N., & Tchier, F. (2023). Third Hankel Determinant for Subclasses of Analytic and m-Fold Symmetric Functions Involving Cardioid Domain and Sine Function. Symmetry, 15(11), 2039. https://doi.org/10.3390/sym15112039

