The Generation of High-Energy Electron–Positron Pairs during the Breit–Wheeler Resonant Process in a Strong Field of an X-ray Electromagnetic Wave
Abstract
:1. Introduction
2. Resonant Energies of the Positron (Electron)
3. Maximum Breit–Wheeler Resonant Cross-Section
4. Conclusions
- It is shown that the resonant cross-section significantly depends on the magnitude of the characteristic Breit–Wheeler energy (7) and the characteristic energy of the Compton effect (5). The ratios of the initial energies of gamma quanta with these characteristic energies significantly affect the magnitude of the resonant cross-section.
- Under the conditions when the energy of the second gamma quantum significantly exceeds the characteristic Breit–Wheeler energy , the resonant energy of the positron (for Channel A) or electron (for Channel B) tends toward the energy of the high-energy second gamma quantum (20) ;
- The magnitude of the resonant cross-section significantly depends on the characteristic Breit–Wheeler energy, as well as the width of the resonance (see Equations (27) and (28)). Consequently, by decreasing the characteristic Breit–Wheeler energy by one order of magnitude, the resonant cross-section increases by two orders of magnitude. Moreover, the highest resonant differential cross-section is achieved when the energy of the second gamma quantum significantly exceeds the characteristic Breit–Wheeler energy , while the energy of the first gamma quantum is significantly lower than the characteristic Compton effect energy . In this case, when reducing the characteristic Breit–Wheeler energy within the range GeV, the maximum resonant cross-section can reach values of .
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Breit, G.; Wheeler, J.A. Collision of two light quanta. Phys. Rev. 1934, 46, 1087–1091. [Google Scholar] [CrossRef]
- Bula, C.; McDonald, K.T.; Prebys, E.J.; Bamber, C.; Boege, S.; Kotseroglou, T.; Melissinos, A.C.; Meyerhofer, D.D.; Ragg, W.; Burke, D.L.; et al. Observation of Nonlinear Effects in Compton Scattering. Phys. Rev. Lett. 1996, 76, 3116–3119. [Google Scholar] [CrossRef] [PubMed]
- Mourou, G.A.; Tajima, T.; Bulanov, S.V. Optics in the relativistic regime. Rev. Mod. Phys. 2006, 78, 309–371. [Google Scholar] [CrossRef]
- Bagnoud, V.; Aurand, B.; Blazevic, A.; Borneis, S.; Bruske, C.; Ecker, B.; Eisenbarth, U.; Fils, J.; Frank, A.; Gaul, E.; et al. Commissioning and early experiments of the PHELIX facility. Appl. Phys. B 2010, 100, 137–150. [Google Scholar] [CrossRef]
- Di Piazza, A.; Müller, C.; Hatsagortsyan, K.Z.; Keitel, C.H. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 2012, 84, 1117–1228. [Google Scholar] [CrossRef]
- Burke, D.L.; Field, R.C.; Horton-Smith, G.; Spencer, J.E.; Walz, D.; Berridge, S.C.; Bugg, W.M.; Shmakov, K.; Weidemann, A.W.; Bula, C.; et al. Positron Production in Multiphoton Light-by-Light Scattering. Phys. Rev. Lett. 1997, 79, 1626–1629. [Google Scholar] [CrossRef]
- Bamber, C.; Boege, S.J.; Koffas, T.; Kotseroglou, T.; Melissinos, A.C.; Meyerhofer, D.D.; Reis, D.A.; Ragg, W.; Bula, C.; McDonald, K.T.; et al. Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev. D 1999, 60, 092004. [Google Scholar] [CrossRef]
- Kanya, R.; Morimoto, Y.; Yamanouchi, K. Observation of Laser-Assisted Electron-Atom Scattering in Femtosecond Intense Laser Fields. Phys. Rev. Lett. 2010, 105, 123202. [Google Scholar] [CrossRef]
- Hartin, A. Strong field QED in lepton colliders and electron/laser interactions. Int. J. Mod. Phys. A 2018, 33, 1830011. [Google Scholar] [CrossRef]
- Magnusson, J.; Gonoskov, A.; Marklund, M.; Esirkepov, T.Z.; Koga, J.K.; Kondo, K.; Kando, M.; Bulanov, S.V.; Korn, G.; Bulanov, S.S. Laser-Particle Collider for Multi-GeV Photon Production. Phys. Rev. Lett. 2019, 122, 254801. [Google Scholar] [CrossRef]
- Berestetskii, V.B.; Lifshitz, E.M.; Pitaevskii, L.P. Quantum Electrodynamics; Butterworth-Heinemann: Oxford, UK, 1982; pp. 1–652. [Google Scholar]
- Ritus, V.I.; Nikishov, A.I. Quantum electrodynamics phenomena in the intense field. In Trudy FIAN; Nauka: Moscow, Russia, 1979; Volume 111, pp. 1–276. [Google Scholar]
- Roshchupkin, S.P. Resonant effects in collisions of relativistic electrons in the field of a light wave. Laser Phys. 1996, 6, 837–858. [Google Scholar]
- Roshchupkin, S.P.; Tsybul’nik, V.A.; Chmirev, A.N. The Probability of Multiphoton Processes in Quantum-Electrodynamic Phenomena in a Strong Light Field. Laser Phys. 2000, 10, 1256–1272. [Google Scholar]
- Mironov, A.A.; Meuren, S.; Fedotov, A.M. Resummation of QED radiative corrections in a strong constant crossed field. Phys. Rev. D 2020, 102, 053005. [Google Scholar] [CrossRef]
- Gonoskov, A.; Blackburn, T.G.; Marklund, M.; Bulanov, S.S. Charged particle motion and radiation in strong electromagnetic fields. Rev. Mod. Phys. 2022, 94, 045001. [Google Scholar] [CrossRef]
- Fedotov, A.; Ilderton, A.; Karbstein, F.; King, B.; Seipt, D.; Taya, H.; Torgrimsson, G. Advances in QED with intense background fields. Phys. Rep. 2023, 1010, 1–138. [Google Scholar]
- Oleinik, V.P. Resonance effects in the field of an intense laser beam. Sov. Phys. JETP 1967, 25, 697–708. [Google Scholar]
- Oleinik, V.P. Resonance effects in the field of an intense laser ray ii. Sov. Phys. JETP 1968, 26, 1132–1138. [Google Scholar]
- Florescu, A.; Florescu, V. Laser-modified electron bremsstrahlung in a Coulomb field. Phys. Rev. A 2000, 61, 033406. [Google Scholar] [CrossRef]
- Flegel, A.V.; Frolov, M.V.; Manakov, N.L.; Starace, A.F.; Zheltukhin, A.N. Analytic description of elastic electron-atom scattering in an elliptically polarized laser field. Phys. Rev. A 2013, 87, 013404. [Google Scholar] [CrossRef]
- Zheltukhin, A.N.; Flegel, A.V.; Frolov, M.V.; Manakov, N.L.; Starace, A.F. Resonant electron-atom bremsstrahlung in an intense laser field. Phys. Rev. A 2014, 89, 023407. [Google Scholar] [CrossRef]
- Zheltukhin, A.N.; Flegel, A.V.; Frolov, M.V.; Manakov, N.L.; Starace, A.F. Rescattering effects in laser-assisted electron–atom bremsstrahlung. J. Phys. B 2015, 48, 075202. [Google Scholar] [CrossRef]
- Li, A.; Wang, J.; Ren, N.; Wang, W.; Zhu, W.; Li, X.; Hoehn, R.; Kais, S. The interference effect of laser-assisted bremsstrahlung emission in Coulomb fields of two nuclei. J. Appl. Phys. 2013, 114, 124904. [Google Scholar] [CrossRef]
- Heinzl, T.; Ilderton, A. Exact Classical and Quantum Dynamics in Background Electromagnetic Fields. Phys. Rev. Lett. 2017, 118, 113202. [Google Scholar] [CrossRef] [PubMed]
- Krachkov, P.A.; Di Piazza, A.; Milstein, A.I. High-energy bremsstrahlung on atoms in a laser field. Phys. Lett. B 2019, 797, 134814. [Google Scholar] [CrossRef]
- Roshchupkin, S.P.; Starodub, S.S. The effect of generation of narrow ultrarelativistic beams of positrons (electrons) in the process of resonant photoproduction of pairs on nuclei in a strong electromagnetic field. Laser Phys. Lett. 2022, 19, 115301. [Google Scholar] [CrossRef]
- Roshchupkin, S.P.; Larin, N.R.; Dubov, V.V. Resonant effect of the ultrarelativistic electron–positron pair production by gamma quanta in the field of a nucleus and a pulsed light wave. Laser Phys. 2021, 31, 045301. [Google Scholar] [CrossRef]
- Roshchupkin, S.P.; Larin, N.R.; Dubov, V.V. Resonant photoproduction of ultrarelativistic electron-positron pairs on a nucleus in moderate and strong monochromatic light fields. Phys. Rev. D 2021, 104, 116011. [Google Scholar] [CrossRef]
- Zhao, Q.; Wu, Y.X.; Ababekri, M.; Li, Z.P.; Tang, L.; Li, J.X. Angle-dependent pair production in the polarized two-photon Breit-Wheeler process. Phys. Rev. D 2023, 107, 096013. [Google Scholar] [CrossRef]
- He, Y.; Yeh, I.L.; Blackburn, T.G.; Arefiev, A. A single-laser scheme for observation of linear Breit–Wheeler electron–positron pair creation. New J. Phys. 2021, 23, 115005. [Google Scholar] [CrossRef]
- Ivanov, D.Y.; Kotkin, G.L.; Serbo, V.G. Complete description of polarization effects in e+ e-pair productionby a photon in the field of a strong laser wave. Eur. Phys. J. C 2005, 40, 27–40. [Google Scholar] [CrossRef]
- Krajewska, K.; Kaminski, J.Z. Breit-Wheeler process in intense short laser pulses. Phys. Rev. A 2012, 86, 052104. [Google Scholar] [CrossRef]
- Bragin, S.; Di Piazza, A. Electron-positron annihilation into two photons in an intense plane-wave field. Phys. Rev. D 2021, 102, 116012. [Google Scholar] [CrossRef]
- Titov, A.I.; Takabe, H.; Kämpfer, B. Nonlinear Breit-Wheeler process in short laser double pulses. Phys. Rev. D 2018, 98, 036022. [Google Scholar] [CrossRef]
- Titov, A.I.; Kämpfer, B. Non-linear Breit–Wheeler process with linearly polarized beams. Eur. Phys. J. D 2020, 74, 218. [Google Scholar] [CrossRef]
- Tang, S. Fully polarized nonlinear Breit-Wheeler pair production in pulsed plane waves. Phys. Rev. D 2022, 105, 056018. [Google Scholar] [CrossRef]
- Blackburn, T.G.; King, B. Higher fidelity simulations of nonlinear Breit–Wheeler pair creation in intense laser pulses. Eur. Phys. J. C 2022, 82, 44. [Google Scholar] [CrossRef]
- Seipt, D.; King, B. Spin-and polarization-dependent locally-constant-field-approximation rates for nonlinear Compton and Breit-Wheeler processes. Phys. Rev. A 2020, 102, 052805. [Google Scholar] [CrossRef]
- Pustyntsev, A.A.; Dubov, V.V.; Roshchupkin, S.P. Resonant Breit-Wheeler process in an external electromagnetic field. Mod. Phys. Lett. A 2020, 35, 2040027. [Google Scholar] [CrossRef]
- Serov, V.D.; Roshchupkin, S.P.; Dubov, V.V. Resonant Effect for Breit–Wheeler Process in the Field of an X-ray Pulsar. Universe 2020, 6, 190. [Google Scholar] [CrossRef]
- Serov, V.D.; Roshchupkin, S.P.; Dubov, V.V. Resonant Breit–Wheeler process in a strong electromagnetic field. TMF 2023, 216, 577–589. [Google Scholar] [CrossRef]
- Roshchupkin, S.P.; Serov, V.D.; Dubov, V.V. Generation of narrow beams of ultrarelativistic positrons (electrons) in the Breit-Wheeler resonant process, modified by the field of a strong electromagnetic wave. Photonics 2023, 10, 949. [Google Scholar] [CrossRef]
- Volkov, D. On a class of solutions of the Dirac equation. Z. Phys. 1935, 94, 250–260. [Google Scholar]
- Wang, H.; Zhong, M.; Gan, L.F. Orthonormality of Volkov Solutions and the Sufficient Condition. Commun. Theor. Phys. 2019, 71, 1179–1186. [Google Scholar] [CrossRef]
- Schwinger, J. On Gauge Invariance and Vacuum Polarization. Phys. Rev. 1951, 82, 664–679. [Google Scholar] [CrossRef]
- Brown, L.S.; Kibble, T.W.B. Interaction of Intense Laser Beams with Electrons. Phys. Rev. 1964, 133, A705–A719. [Google Scholar] [CrossRef]
- Breit, G.; Wigner, E. Capture of Slow Neutrons. Phys. Rev. 1936, 49, 519–531. [Google Scholar] [CrossRef]
- Deng, Z.-L.; Gao, Z.-F.; Li, X.-D.; Shao, Y. On the Formation of PSR J1640+2224: A Neutron Star Born Massive? Astrophys. J. 2020, 892, 4. [Google Scholar] [CrossRef]
- Deng, Z.-L.; Gao, Z.-F.; Li, X.-D.; Shao, Y. Evolution of LMXBs under Different Magnetic Braking Prescriptions. Astrophys. J. 2021, 909, 174. [Google Scholar] [CrossRef]
- Gao, Z.-F.; Wang, N.; Shan, H.; Li, X.-D.; Wang, W. The Dipole Magnetic Field and Spin-down Evolutions of the High Braking Index Pulsar PSR J1640–4631. Astrophys. J. 2017, 849, 19. [Google Scholar] [CrossRef]
- Wang, H.; Gao, Z.-F.; Jia, H.-Y.; Wang, N.; Li, X.-D. Estimation of Electrical Conductivity and Magnetization Parameter of Neutron Star Crusts and Applied to the High-Braking-Index Pulsar PSR J1640-4631. Universe 2020, 6, 63. [Google Scholar] [CrossRef]
- Gao, Z.-F.; Li, X.-D.; Wang, N.; Yuan, J.P.; Wang, P.; Peng, Q.H.; Du, Y.J. Constraining the braking indices of magnetars. Mon. Notices Royal Astron. Soc. 2016, 456, 55–65. [Google Scholar] [CrossRef]
- Yan, F.-Z.; Gao, Z.-F.; Yang, W.-S.; Dong, A.-J. Explaining high braking indices of magnetars SGR 0501+4516 and 1E 2259+586 using the double magnetic-dipole model. Astron. Nachrichten 2021, 342, 249–254. [Google Scholar] [CrossRef]
- Gus’kov, S.Y. Laser fusion and high energy density physics. Kvantovaya Elektron. 2022, 52, 1070–1078. [Google Scholar] [CrossRef]
(r,r’) | |||
---|---|---|---|
, , | (1,1) | 0 | |
(2,1) | 0.095 | ||
(1,2) | 0 | ||
(2,2) | 0.060 | ||
, , | (1,1) | 0 | |
(2,1) | 0.047 | ||
(1,2) | 0 | ||
(2,2) | 0.069 | ||
, , | (1,1) | 0 | |
(2,1) | 0.025 | ||
(1,2) | 0 | ||
(2,2) | 0.048 |
(r,r’) | |||
---|---|---|---|
, | (1,1) | 0 | |
(2,1) | 0.070 | ||
(1,2) | 0 | ||
(2,2) | 0.055 | ||
, | (1,1) | 0 | |
(2,1) | 0.033 | ||
(1,2) | 0 | ||
(2,2) | 0.063 | ||
, | (1,1) | 0 | |
(2,1) | 0.020 | ||
(1,2) | 0 | ||
(2,2) | 0.043 |
(r,r’) | |||
---|---|---|---|
, | (1,1) | 0 | |
(2,1) | 0.070 | ||
(1,2) | 0 | ||
(2,2) | 0.043 | ||
, | (1,1) | 0 | |
(2,1) | 0.073 | ||
(1,2) | 0 | ||
(2,2) | 0.044 | ||
, | (1,1) | 0 | |
(2,1) | 0.073 | ||
(1,2) | 0 | ||
(2,2) | 0.044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roshchupkin, S.P.; Serov, V.D.; Dubov, V.V. The Generation of High-Energy Electron–Positron Pairs during the Breit–Wheeler Resonant Process in a Strong Field of an X-ray Electromagnetic Wave. Symmetry 2023, 15, 1901. https://doi.org/10.3390/sym15101901
Roshchupkin SP, Serov VD, Dubov VV. The Generation of High-Energy Electron–Positron Pairs during the Breit–Wheeler Resonant Process in a Strong Field of an X-ray Electromagnetic Wave. Symmetry. 2023; 15(10):1901. https://doi.org/10.3390/sym15101901
Chicago/Turabian StyleRoshchupkin, Sergei P., Vitalii D. Serov, and Victor V. Dubov. 2023. "The Generation of High-Energy Electron–Positron Pairs during the Breit–Wheeler Resonant Process in a Strong Field of an X-ray Electromagnetic Wave" Symmetry 15, no. 10: 1901. https://doi.org/10.3390/sym15101901
APA StyleRoshchupkin, S. P., Serov, V. D., & Dubov, V. V. (2023). The Generation of High-Energy Electron–Positron Pairs during the Breit–Wheeler Resonant Process in a Strong Field of an X-ray Electromagnetic Wave. Symmetry, 15(10), 1901. https://doi.org/10.3390/sym15101901