On Convex Ordered Hyperrings
Abstract
:1. Introduction
- (1)
- is a canonical hypergroup;
- (2)
- is a semigroup and for all ;
- (3)
- The operation ⊙ is distributive with respect to the hyperoperation ⊕.
- (i)
- ;
- (ii)
- .
2. Results and Discussion
- (1)
- for any , implies or ;
- (2)
- implies for some .
- (1)
- ;
- (2)
- ;
- (3)
- .
- (i)
- for every , q is a hyperatom element;
- (ii)
- .
- (i)
- ;
- (ii)
- ;
- (iii)
- .
3. Conlusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marty, F. Sur une generalization de la notion de groupe. In Proceedings of the 8th Congress of Scandinavian Mathematicians, Stockholm, Sweden, 14–18 August 1934; pp. 45–49. [Google Scholar]
- Krasner, M. A class of hyperrings and hyperfields. Intern. Math. Math Sci. 1983, 6, 307–312. [Google Scholar] [CrossRef]
- Mirvakili, S.; Davvaz, B. Relations on Krasner (m,n)-hyperrings. Eur. J. Combin. 2010, 31, 790–802. [Google Scholar] [CrossRef] [Green Version]
- Heidari, D.; Davvaz, B. On ordered hyperstructures. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2011, 73, 85–96. [Google Scholar]
- Davvaz, B.; Corsini, P.; Changphas, T. Relationship between ordered semihypergroups and ordered semigroups by using pseudoorder. Eur. J. Comb. 2015, 44, 208–217. [Google Scholar] [CrossRef]
- Tang, J.; Feng, X.; Davvaz, B.; Xie, X.Y. A further study on ordered regular equivalence relations in ordered semihypergroups. Open Math. 2018, 16, 168–184. [Google Scholar] [CrossRef] [Green Version]
- Qiang, X.; Guan, H.; Rashmanlou, H. A note on the w-pseudo-orders in ordered (semi)hyperrings. Symmetry 2021, 13, 2371. [Google Scholar] [CrossRef]
- Rao, Y.; Kosari, S.; Shao, Z.; Akhoundi, M.; Omidi, S. A study on A-I-Γ-hyperideals and (m,n)-Γ-hyperfilters in ordered Γ-Semihypergroups. Discret. Dyn. Nat. Soc. 2021, 2021, 10. [Google Scholar] [CrossRef]
- Al-Tahan, M.; Davvaz, B.; Mahboob, A.; Hoskova-Mayerova, S.; Vagaská, A. On new filters in ordered semigroups. Symmetry 2022, 14, 1564. [Google Scholar] [CrossRef]
- Omidi, S.; Davvaz, B. Convex ordered Γ-semihypergroups associated to strongly regular relations. Matematika 2017, 33, 227–240. [Google Scholar] [CrossRef]
- Shao, Z.; Chen, X.; Kosari, S.; Omidi, S. On some properties of right pure (bi-quasi-)hyperideals in ordered semihyperrings. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2021, 83, 95–104. [Google Scholar]
- Posner, E.C. Derivations in prime rings. Proc. Am. Math. Soc. 1957, 8, 1093–1100. [Google Scholar] [CrossRef]
- Asokkumar, A. Derivations in hyperrings and prime hyperrings. Iran. J. Math. Sci. Inform. 2013, 8, 1–13. [Google Scholar]
- Kamali Ardekani, L.; Davvaz, B. Some notes on differential hyperrings. Iran. J. Sci. Technol. 2015, 39, 101–111. [Google Scholar]
- Rao, Y.; Kosari, S.; Shao, Z.; Omidi, S. Some properties of derivations and m-k-hyperideals in ordered semihyperrings. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2017, 83, 87–96. [Google Scholar]
- Rao, Y.; Zhou, Q.; Cai, R.; Li, Y.; Omidi, S. An investigation on derivations and hyperatom elements of ordered semihyperrings. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2022, 84, 55–60. [Google Scholar]
- Kou, Z.; Gheisari, M.; Hila, K.; Abbasizadeh, N. Some aspects of hyperatom elements in ordered semihyperrings. Symmetry 2022, 14, 2265. [Google Scholar] [CrossRef]
- Davvaz, B.; Leoreanu-Fotea, V. Hyperring Theory and Applications; International Academic Press: Palm Harbor, FL, USA, 2007. [Google Scholar]
- Omidi, S.; Davvaz, B. Some studies on ordered Krasner hyperrings with respect to derivations. Jordan J. Math. Stat. 2017, 10, 217–234. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, Y.; Gheisari, M.; Abbasizadeh, N. On Convex Ordered Hyperrings. Symmetry 2023, 15, 61. https://doi.org/10.3390/sym15010061
Rao Y, Gheisari M, Abbasizadeh N. On Convex Ordered Hyperrings. Symmetry. 2023; 15(1):61. https://doi.org/10.3390/sym15010061
Chicago/Turabian StyleRao, Yongsheng, Mehdi Gheisari, and Nategh Abbasizadeh. 2023. "On Convex Ordered Hyperrings" Symmetry 15, no. 1: 61. https://doi.org/10.3390/sym15010061
APA StyleRao, Y., Gheisari, M., & Abbasizadeh, N. (2023). On Convex Ordered Hyperrings. Symmetry, 15(1), 61. https://doi.org/10.3390/sym15010061