Generic Behavior of Electromagnetic Fields of Regular Rotating Electrically Charged Compact Objects in Nonlinear Electrodynamics Minimally Coupled to Gravity
Abstract
1. Introduction
2. Basic Equations
2.1. Geometry
2.2. Electromagnetic Fields
3. Lagrange Dynamics
4. General Solutions and Generic Properties of Regular Electrically Charged NED-GR Objects
4.1. General Solutions
4.2. Generic Behavior of Electrically Charged NED-GR Objects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wald, R.M. Black hole in a uniform magnetic field. Phys. Rev. D 1974, 10, 1680–1685. [Google Scholar] [CrossRef]
- Kovar, J.; Slany, P.; Cremaschini, C.; Stuchlik, Z. Electrically charged matter in rigid rotation around magnetized black hole. Phys. Rev. D 2014, 90, 044029. [Google Scholar] [CrossRef]
- Hamilton, A.J.S. Interior structure of rotating black holes. III. Charged black holes. Phys. Rev. D 2011, 84, 124057. [Google Scholar] [CrossRef]
- Crispino, L.C.B.; Dolan, S.R.; Higushi, A.; de Oliveira, E.S. Inferring black hole charge from backscattered electromagnetic radiation. Phys. Rev. D 2014, 90, 064027. [Google Scholar] [CrossRef]
- Abraham, M. Prinzipien der dynamik des electrons. Ann. Phys. 1903, 10, 105–179. [Google Scholar]
- Lorentz, H.A. Electromagnetic phenomena in a system moving with any velocity smaller than that of light. Proc. R. Neth. Acad. Arts Sci. 1904, 6, 809–831. [Google Scholar]
- Lorentz, H.A. Theory of Electrons, 2nd ed.; Dover: New York, NY, USA, 1952. [Google Scholar]
- Dirac, P.A.M. Classical theory of radiating electrons. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1938, 167, 148–169. [Google Scholar]
- Dirac, P.A.M. A new classical theory of electrons. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1951, 209, 291–296. [Google Scholar]
- Dymnikova, I. Image of the Electron Suggested by Nonlinear Electrodynamics Coupled to Gravity. Particles 2021, 4, 129–145. [Google Scholar] [CrossRef]
- Dirac, P.A.M. An extensible model of the electron. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1962, 268, 57–67. [Google Scholar]
- Boyer, R.H. Rotating fluid masses in general relativity. Math. Proc. Camb. Philos. Soc. 1965, 61, 527–530. [Google Scholar] [CrossRef]
- Boyer, R.H. Rotating fluid masses in general relativity. II. Math. Proc. Camb. Philos. Soc. 1966, 62, 495–501. [Google Scholar] [CrossRef]
- Righi, R.; Venturi, G. Nonlinear approach to electrodynamics. Int. J. Theor. Phys. 1982, 21, 63–82. [Google Scholar] [CrossRef]
- Rodrigues, W.A., Jr.; Vaz, J., Jr.; Recami, E. A Generalization of Dirac Non Linear Electrodynamics, and Spinning Charged Particles. Found. Phys. 1993, 23, 469–481. [Google Scholar] [CrossRef]
- Pope, T.; Hofer, W. Spin in the extended electron model. Front. Phys. 2017, 12, 128503. [Google Scholar] [CrossRef]
- Pope, T.; Hofer, W. A two-density approach to the general many-body problem and a proof of principle for small atoms and molecules. arXiv 2018, arXiv:1801.06242. [Google Scholar] [CrossRef]
- Newman, E.T.; Cough, E.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R. Metric of a rotating charged mass. J. Math. Phys. 1965, 6, 918–919. [Google Scholar] [CrossRef]
- Carter, B. Clobal structure of the Kerr family of gravitational fields. Phys. Rev. 1968, 174, 1559–1571. [Google Scholar] [CrossRef]
- Israel, W. Source of the Kerr metric. Phys. Rev. D 1970, 2, 641–646. [Google Scholar] [CrossRef]
- Burinskii, A.Y. Microgeons with spin. Sov. Phys. JETP 1974, 39, 23–42. [Google Scholar]
- López, C.A. Material and electromagnetic sources of the Kerr-Newman geometry. Il Nuovo C. B (1971–1996) 1983, 76, 9–27. [Google Scholar] [CrossRef]
- López, C.A. Extended model of the electron in general relativity. Phys. Rev. D 1984, 30, 313–316. [Google Scholar] [CrossRef]
- Trümper, M. Einsteinsche Feldgleichungen für das axialsymmetrische stationäre Gravitiationsfeld im Innern einer starr rotierenden idealen Flüssigkeit. Z. für Naturforschung 1967, 22, 1347. [Google Scholar] [CrossRef]
- Tiomno, J. Electromagnetic field of rotating charged bodies. Phys. Rev. D 1973, 7, 992–997. [Google Scholar] [CrossRef]
- Burinskii, A.Y. The problem of the source of the Kerr- Newman metric: The volume Casimir effect and superdense pseudovacuum state. Phys. Lett. B 1989, 216, 123–126. [Google Scholar] [CrossRef]
- Burinskii, A.; Elizalde, E.; Hildebrandt, S.R.; Magli, G. Regular sources of the Kerr-Schild class for rotating and nonrotating black hole solutions. Phys. Rev. D 2002, 65, 064039. [Google Scholar] [CrossRef]
- Burinskii, A. Kerr-Newman electron as spinning soliton. Int. J. Mod. Phys. 2014, 29, 1450133. [Google Scholar] [CrossRef]
- Burinskii, A. Gravitating lepton bag model. J. Exp. Theor. Phys. 2015, 148, 228–232. [Google Scholar] [CrossRef]
- Burinskii, A. Gravitational strings beyond quantum theory: Electron as a closed heterotic string. J. Phys. Conf. Ser. 2012, 361, 012032. [Google Scholar] [CrossRef]
- Burinskii, A. Stringlike structures in Kerr-Shild geometry. Theor. Math. Phys. 2013, 177, 1492–1504. [Google Scholar] [CrossRef]
- Newman, E.T.; Janis, A.J. Note on the Kerr Spinning Particle Metric. J. Math. Phys. 1965, 6, 915–917. [Google Scholar] [CrossRef]
- Gürses, M.; Gürsey, F. Lorentz covariant treatment of the Kerr-Schild geometry. J. Math. Phys. 1975, 16, 2385–2390. [Google Scholar] [CrossRef]
- Kerr, R.P.; Schild, A. Some algebraically degenerate solutions of Einstein’s gravitational field equations. Proc. Symp. Appl. Math. 1965, 17, 199. [Google Scholar]
- Ayon-Beato, E.; Garcia, A. Regular black hole in general relativity coupled to nonlinear electrodynamics. Phys. Rev. Lett. 1998, 80, 5056–5059. [Google Scholar] [CrossRef]
- Ayon-Beato, E.; Garcia, A. New regular black hole solution from nonlinear electrodynamics. Phys. Lett. B 1999, 464, 25–29. [Google Scholar] [CrossRef]
- Ayon-Beato, E.; Garcia, A. Non-singular charged black hole solution for non-linear source. Gen. Rel. Grav. 1999, 31, 629–633. [Google Scholar] [CrossRef]
- Ayon-Beato, E.; Garcia, A. Four parametric regular black hole solution. Gen. Rel. Grav. 2005, 37, 635–641. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Regular magnetic black holes and monopoles from nonlinear electrodynamics. Phys. Rev. D 2001, 63, 044005. [Google Scholar] [CrossRef]
- Breton, N. Born-Infeld black hole in the isolated horizon framework. Phys. Rev. D 2003, 67, 124004. [Google Scholar] [CrossRef]
- Dymnikova, I. Regular electrically charged vacuum structures with de Sitter center in nonlinear electrodynamics coupled to general relativity. Class. Quantum Gravity 2004, 21, 4417–4428. [Google Scholar] [CrossRef]
- Modesto, L.; Nicolini, P. Charged rotating noncommutative black holes. Phys. Rev. D 2010, 82, 104035. [Google Scholar] [CrossRef]
- Balart, L.; Vagenas, E.C. Regular black hole metrics and the weak energy condition. Phys. Lett. B 2014, 730, 14–17. [Google Scholar] [CrossRef]
- Balart, L.; Vagenas, E.C. Regular black holes with a nonlinear electrodynamics source. Phys. Rev. D 2014, 90, 124045. [Google Scholar] [CrossRef]
- Toshmatov, B.; Ahmedov, B.; Abdujabbarov, A.; Stuchlik, Z. Rotating regular black hole solution. Phys. Rev. D 2014, 89, 104017. [Google Scholar] [CrossRef]
- Dymnikova, I.; Galaktionov, E. Basic Generic Properties of Regular Rotating Black Holes and Solitons. Adv. Math. Phys. 2017, 2017, 1035381. [Google Scholar] [CrossRef]
- Born, M.; Infeld, L. Foundations of the new field theory. Proc. R. Soc. Lond. Ser. A 1934, 144, 425. [Google Scholar] [CrossRef]
- Fradkin, E.S.; Tseytlin, A.A. Nonlinear electrodynamics from quantized strings. Phys. Lett. B 1985, 123–130. [Google Scholar] [CrossRef]
- Tseytlin, A.A. Vector field effective action in the open superstring theory. Nucl. Phys. B 1986, 276, 391–428. [Google Scholar] [CrossRef]
- Siberg, N.; Witten, E. String theory and noncommutative geometry. J. High Energy Phys. 1999, 1999, 32–92. [Google Scholar] [CrossRef]
- Dymnikova, I. Spinning superconducting electrovacuum soliton. Phys. Lett. B 2006, 639, 368–372. [Google Scholar] [CrossRef]
- Dymnikova, I.; Galaktionov, E. Regular rotating electrically charged black holes and solitons in nonlinear electrodynamics minimally coupled to gravity. Class. Quantum Gravity 2015, 32, 165015. [Google Scholar] [CrossRef]
- Coleman, S. Classical lumps and their quantum descendants. In New Phenomena in Subnuclear Physics: Part A; Zichichi, A., Ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1977; p. 297. [Google Scholar]
- Dymnikova, I. Mass, Spacetime Symmetry, de Sitter Vacuum, and the Higgs Mechanism. Symmetry 2020, 12, 634. [Google Scholar] [CrossRef]
- Dymnikova, I. The cosmological term as a source of mass. Class. Quantum Gravity 2002, 19, 725–740. [Google Scholar] [CrossRef]
- Dymnikova, I. Spacetime symmetry and mass of a lepton. J. Phys. A Math. Theor. 2008, 41, 304033. [Google Scholar] [CrossRef]
- Englert, F.; Brout, R. Broken Symmetries and the Mass of Gauge Vector Mesons. Phys. Rev. Lett. 1964, 13, 321–323. [Google Scholar] [CrossRef]
- Higgs, P.W. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 1964, 13, 508–509. [Google Scholar] [CrossRef]
- Guralnik, G.S.; Hagen, C.R.; Kibble, T.W.B. Global conservation laws and massless particles. Phys. Rev. Lett. 1964, 13, 585–587. [Google Scholar] [CrossRef]
- Quigg, C. Gauge Theories of the Strong, Weak and Electromagnetic Interactions; Addison-Wesley Publishing Company: Redwood City, CA, USA, 1983. [Google Scholar]
- Weinberg, S. The Quantum Theory of Fields II; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Dymnikova, I.; Galaktionov, E. Regular rotating de Sitter–Kerr black holes and solitons. Class. Quantum Grav. 2016, 33, 145010. [Google Scholar] [CrossRef]
- Dymnikova, I.; Sakharov, A.; Ulbricht, J. Minimal Length Scale in Annihilation. arXiv 2009, arXiv:0907.0629. [Google Scholar]
- Dymnikova, I.; Sakharov, A.; Ulbricht, J. Appearance of a minimal length in e+e- annihilation. Adv. High Energy Phys. 2014, 2014, 707812. [Google Scholar] [CrossRef]
- Dymnikova, I.; Galaktionov, E. Dynamics of Electromagnetic Fields and Structure of Regular Rotating Electrically Charged Black Holes and Solitons in Nonlinear Electrodynamics Minimally Coupled to Gravity. Universe 2019, 5, 205. [Google Scholar] [CrossRef]
- Chandrasekhar, S. The Mathematical Theory of Black Holes; Clarendon Press: New York, NY, USA, 1983. [Google Scholar]
- Dymnikova, I. The Higgs Mechanism and Spacetime Symmetry. Universe 2020, 6, 179. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Electrodynamics of Continued Media; Pergamon Press: Oxford, UK, 1993. [Google Scholar]
- Dymnikova, I.; Galaktionov, E.; Tropp, E. Existence of electrically charged structures with regular center in nonlinear electrodynamics minimally coupled to gravity. Adv. Math. Phys. 2015, 2015, 496475. [Google Scholar] [CrossRef]
- Dymnikova, I. Electromagnetic source for the Kerr–Newman geometry. Int. J. Mod. Phys. D 2015, 24, 1550094. [Google Scholar] [CrossRef]
- Dymnikova, I. Origin of the magnetic momentum for regular electrically charged objects described by nonlinear electrodynamics coupled to gravity. Intern. J. Mod. Phys. D 2019, 28, 1950011. [Google Scholar] [CrossRef]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Dymnikova, I. De Sitter-Schwarzschild black hole: Its particlelike core and thermodynamical properties. Int. J. Mod. Phys. D 1996, 5, 529–540. [Google Scholar] [CrossRef]
- Bassett, B.A.; Kunz, M.; Silk, J.; Ungarelli, C. A late-time transition in the cosmic dark energy? Mon. Not. R. Astron. Soc. 2002, 336, 1217–1222. [Google Scholar] [CrossRef]
- Corasaniti, P.S.; Kunz, M.; Parkinson, D.; Copeland, E.J.; Bassett, B.A. Foundations of observing dark energy dynamics with the Wilkinson Microwave Anisotropy Probe. Phys. Rev. D 2004, 70, 083006. [Google Scholar] [CrossRef]
- Licata, I.; Chiatti, L. Archaic Universe and Cosmological Model: “Big-Bang” as Nucleation by Vacuum. Intern. J. Theor. Phys. 2010, 49, 2379–2402. [Google Scholar] [CrossRef]
- Suzuki, N.; Rubin, D.; Lidman, C.; Aldering, G.; Amanullah, R.; Barbary, K.; Barrientos, L.F.; Botyanszki, J.; Brodwin, M.; Connolly, N.; et al. The Hubble Space Telescope Cluster Supernova Survey: Improving the Dark Energy Constraints and Building an Early-Type-Hosted Supernova Sample. Astrophys. J. 2012, 746, 85. [Google Scholar] [CrossRef]
- Ade, P.A.; Aikin, R.W.; Barkats, D.; Benton, S.J.; Bischoff, C.A.; Bock, J.J.; Brevik, J.A.; Buder, I.; Bullock, E.; Dowell, C.D.; et al. Detection of B-Mode Polarization at Degree Angular Scales by BICEP2. Phys. Rev. Lett. 2014, 112, 241101. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.; Aubourg, E.; Bailey, S.; Beutler, F.; Bhardwaj, V.; Blanton, M.; Bolton, A.S.; Brinkmann, J.; Brownstein, J.R.; Burden, A.; et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples. Mon. Not. R. Astron. Soc. 2014, 441, 24–62. [Google Scholar] [CrossRef]
- Sahni, V.; Shafiello, A.; Starobinsky, A.A. Model-independent Evidence for Dark Energy Evolution from Baryon Acoustic Oscillations. Astrophys. J. Lett. 2014, 793, L40. [Google Scholar] [CrossRef]
- Rivera, A.B.; Garcia-Farieta, J.E. Exploring the Dark Universe: Constraint on dynamical dark energy models from CMB, BAO and Growth Rate Measurements. Int. J. Mod. Phys. D 2019, 28, 1950118. [Google Scholar] [CrossRef]
- Dymnikova, I. The fundamental roles of the de Sitter vacuum. Universe 2020, 6, 101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dymnikova, I.; Galaktionov, E. Generic Behavior of Electromagnetic Fields of Regular Rotating Electrically Charged Compact Objects in Nonlinear Electrodynamics Minimally Coupled to Gravity. Symmetry 2023, 15, 188. https://doi.org/10.3390/sym15010188
Dymnikova I, Galaktionov E. Generic Behavior of Electromagnetic Fields of Regular Rotating Electrically Charged Compact Objects in Nonlinear Electrodynamics Minimally Coupled to Gravity. Symmetry. 2023; 15(1):188. https://doi.org/10.3390/sym15010188
Chicago/Turabian StyleDymnikova, Irina, and Evgeny Galaktionov. 2023. "Generic Behavior of Electromagnetic Fields of Regular Rotating Electrically Charged Compact Objects in Nonlinear Electrodynamics Minimally Coupled to Gravity" Symmetry 15, no. 1: 188. https://doi.org/10.3390/sym15010188
APA StyleDymnikova, I., & Galaktionov, E. (2023). Generic Behavior of Electromagnetic Fields of Regular Rotating Electrically Charged Compact Objects in Nonlinear Electrodynamics Minimally Coupled to Gravity. Symmetry, 15(1), 188. https://doi.org/10.3390/sym15010188