Impact Attenuator Design for Improvement of Racing Car Drivers’ Safety
Abstract
:1. Introduction
2. Materials and Methods
- -
- For the dummy—M1_ELAST;
- -
- For arms suspension—nonlinear steel using M2-John-Zeril Card Image Material. Ultimate stress considered is 450 MPa;
- -
- For tires—nonlinear rubber considering M2-John-Zeril as the card image. Properties of the material for linear zones are as follows: Young’s modulus of 200 MPa, Poisson ratio of 0.49. A unitary hardening exponent was considered to define the plasticity zone.
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashley, S. Mechanical Seat-Belt Tensioner. Mech. Eng. 1992, 114, 24. [Google Scholar]
- DeGaspari, J. ‘Smarter’ seat belt fiber. Mech. Eng. 2002, 124, 22–30. [Google Scholar]
- Takimizu, Y. Retraction performance of motor vehicle seat belt. J. Jpn. Soc. Tribol. 1997, 42, 625–630. [Google Scholar]
- Sances, A.; Kumaresan, S.; Herbst, B.; Meyer, S.; Hock, D. Biomechanics of seat belt restraint system. In Proceedings of the 41st Annual Rocky Mountain Bioengineering Symposium/41st International ISA Biomedical Sciences Instrumentation Symposium, Ft Collins, CO, USA, 23–25 April 2004; Volume 449, pp. 377–380. [Google Scholar]
- Zhao, F.; Jiao, H.Y. Topography Optimization of Automobile Seat Belt Bracket. In Proceedings of the 2017 International Conference on Mechanical, Electronic, Control and Automation Engineering (MECAE 2017), Beijing, China, 25–26 March 2017; Volume 61, pp. 10–14. [Google Scholar]
- Dubois, D.; Gross, P.; Tramecon, A.; Markiewicz, E. Finite element analysis of seat belt bunching phenomena. Int. J. Crashworthiness 2006, 11, 519–528. [Google Scholar] [CrossRef]
- Kang, S.J.; Chun, B.K. Strength analysis of automotive seat belt anchorage. Int. J. Veh. Des. 2001, 26, 496–508. [Google Scholar] [CrossRef]
- Roberts, A.; Partain, M.; Batzer, S.; Renfroe, D. Failure analysis of seat belt buckle inertial release. Eng. Fail. Anal. 2007, 14, 1135–1143. [Google Scholar] [CrossRef]
- Dubois, D.; Zellmer, H.; Markiewicz, E. Experimental and numerical analysis of seat belt bunching phenomenon. Int. J. Impact Eng. 2009, 36, 763–774. [Google Scholar] [CrossRef]
- Cao, L.G.; Feng, H. Torque performance measurement system for spring in seat belt. In Proceedings of the 3rd International Conference on Advances in Materials Manufacturing (ICAMMP 2012), Beihai, China, 22–23 December 2012; Volume 655–657, pp. 1149–1152. [Google Scholar] [CrossRef]
- Tang, Y.M.; Lv, N.; Xue, Q.; Wang, T.; Tan, W.F. Experiment Simulation of Seat Belt and ISOFIX Anchorage for a Commercial Vehicle. In Proceedings of the 8th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Macau, China, 11–12 March 2016; pp. 282–285. [Google Scholar] [CrossRef]
- Jung, S.P.; Park, T.W.; Park, C.S. Dynamic analysis and design optimisation of the seat belt pretensioner. Veh. Syst. Dyn. 2010, 48, 65–78. [Google Scholar] [CrossRef]
- Meyer, S.E.; Hock, D.; Forrest, S.; Herbst, B. Motor vehicle seat belt restraint system analysis during rollover. In Proceedings of the 40th Annual Rocky Mountain Bioengineering Symposium/40th International ISA Biomedical Sciences Instrumentation Symposium, Biloxi, MS, USA, 10–13 April 2003; Biomedical Sciences Instrumentation, Book Series. Volume 39, pp. 229–240. [Google Scholar]
- Shi, P.C.; Xu, Z.W. Analysis of Seat. In Proceedings of the 5th Annual International Conference on Material Science and Environmental Engineering (MSEE 2017), Xiamen, China, 15–17 October 2017; Volume 301, p. 012127. [Google Scholar] [CrossRef]
- Huston, R.L. A Review of the effectiveness of seat belt systems: Design and safety considerations. Int. J. Crashworthiness 2001, 6, 243–252. [Google Scholar] [CrossRef]
- Itu, C.; Toderita, A.; Melnic, L.-V.; Vlase, S. Effects of Seat Belts and Shock Absorbers on the Safety of Racing Car Drivers. Mathematics 2022, 10, 3593. [Google Scholar] [CrossRef]
- Karishma, P.; Venugopal, K.V.; Raju, I.R.K. Optimization and Impact Analysis of a Roll Cage Model. Int. Res. J. Eng. Technol. (IRJET) 2018, 5, 526–543. [Google Scholar]
- Kanketr, T.; Phongphinnittana, E.; Patamaprohm, B. Design of a CFRP composite monocoque: Simulation approach. In Proceedings of the 9th Thai-Society-of-Mechanical-Engineers International Conference on Mechanical Engineering (TSME-ICoME), Phuket, Thailand, 11–14 December 2018; IOP Conference Series-Materials Science and Engineering. Volume 501, p. 012014. [Google Scholar] [CrossRef]
- Lufinka, A. Crash Test of the Student Racing Car Impact Attenuator. In Proceedings of the 58th International Conference of Machine Design Departments (ICMD 2017), Prague, Czech Republic, 6–8 September 2017; pp. 210–213. [Google Scholar]
- Kaul, A.; Abbas, A.; Smith, G.; Manjila, S.; Pace, J.; Steinmetz, M. A revolution in preventing fatal craniovertebral junction injuries: Lessons learned from the Head and Neck Support device in professional auto racing. J. Neurosurgey-Spine 2016, 25, 756–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihradi, S.; Golfianto, H.; Mahyuddin, A.I.; Dirgantara, T. Head Injury Analysis of Vehicle Occupant in Frontal Crash Simulation: Case Study of ITB’s Formula SAE Race Car. J. Eng. Technol. Sci. 2017, 49, 534–545. [Google Scholar] [CrossRef]
- Guegan, P.; Lebreton, D.; Pasco, F.; Othman, R.; Le Corre, S.; Poitou, A. Metallic energy-absorbing inserts for Formula One tyre barriers. Proceeding Inst. Mech. Eng. Part D-J. Automob. Eng. 2008, 222, 699–704. [Google Scholar] [CrossRef] [Green Version]
- Davies, H.C.; Bryant, M.; Hope, M.; Meiller, C. Design, development, and manufacture of an aluminium honeycomb sandwich panel monocoque chassis for Formula Student competition. Proc. Inst. Mech. Eng. Part D-J. Automob. Eng. 2012, 226, 325–337. [Google Scholar] [CrossRef] [Green Version]
- Albak, E.I.; Solmaz, E.; Kaya, N.; Ozturk, F. Impact attenuator conceptual design using lightweight materials and meta-modeling technique. Mater. Test. 2019, 61, 621–626. [Google Scholar] [CrossRef]
- Switek, W.; Vallejo, R. Finite element dynamic simulation of a race car. In Proceedings of the Computer Aided Optimum Design of Structures VIII, Structures and Materials, Dearborn, MI, USA, 19–21 May 2003; Volume 13, pp. 115–122. [Google Scholar]
- Nguyen, H.C.; Vo-Minh, T. The use of the node-based smoothed finite element method to estimate static and seismic bearing capacities of shallow strip footings. J. Rock Mech. Geotech. Eng. 2022, 14, 180–196. [Google Scholar] [CrossRef]
- Iorio, L. Revisiting the 2PN Pericenter Precession in View of Possible Future Measurements. Universe 2020, 6, 53. [Google Scholar] [CrossRef]
- Negrean, I. Formulations about Elastodynamics in Robotics. Acta Tech. Napoc. Ser. Appl. Math. Mech. Eng. 2019, 62, 237–250. [Google Scholar]
- Hassan, M.; Bruni, S. Experimental and numerical investigation of the possibilities for the structural health monitoring of railway axles based on acceleration measurements. Struct. Health Monit. Int. J. 2019, 18, 902–919. [Google Scholar] [CrossRef]
- Xiao, M.L.; Zhang, Y.; Zhu, H.Y. The mechanism of hindering occupants’ evacuation from seismic responses of building. Nat. Hazards 2019, 96, 669–692. [Google Scholar] [CrossRef]
- Filben, T.M.; Pritchard, N.S.; Oravec, C.S.; Hile, C.W.; Bercaw, J.R.; Zoch, S.R.; Miller, L.E.; Bullock, G.S.; Flashman, L.A.; Miles, C.M.; et al. Pilot characterization of head kinematics in grassroots dirt track racing traffic injury prevention. Traffic Inj. Prev. 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.; Gupta, V.; Aulakh, S.S.; Elsen, R.S. Generative design and analysis of a double-wishbone suspension assembly: A methodology for developing constraint oriented solutions for optimum material distribution. J. Eng. Des. Tecnol. 2021, in press. [Google Scholar] [CrossRef]
- Drage, T.; Lim, K.L.; Koh, J.E.H.; Gregory, D.; Brogle, C.; Braunl, T. Integrated Modular Safety System Design for Intelligent Autonomous Vehicles. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium (IV), Nagoya, Japan, 11–17 July 2021; pp. 258–265. [Google Scholar] [CrossRef]
- Vaverka, O.; Koutny, D.; Palousek, D. Topologically optimized axle carrier for Formula Student produced by selective laser melting. Rapid Prototyp. J. 2019, 25, 1545–1551. [Google Scholar] [CrossRef]
- Vlase, S.; Teodorescu, P.P. Elasto-Dynamics of a Solid with a General “RIGID” Motion using FEM Model. Part I. Theoretical Approach. Rom. J. Phys. 2013, 58, 872–881. [Google Scholar]
- Vlase, S.; Negrean, I.; Marin, M.; Scutaru, M.L. Energy of Accelerations Used to Obtain the Motion Equations of a Three- Dimensional Finite Element. Symmetry 2020, 12, 321. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, J.W. On the fundamental formulae of dynamics. Am. J. Math. 1879, 2, 49–64. [Google Scholar] [CrossRef]
- Appell, P. Sur une forme générale des equations de la dynamique. C.R. Acad. Sci. Paris 1899, 129, 317–320. [Google Scholar]
- Mirtaheri, S.M.; Zohoor, H. The Explicit Gibbs-Appell Equations of Motion for Rigid-Body Constrained Mechanical System. In Proceedings of the RSI International Conference on Robotics and Mechatronics ICRoM, Piscataway, NJ, USA, 23–25 October 2018; pp. 304–309. [Google Scholar]
- Korayem, M.H.; Dehkordi, S.F. Motion equations of cooperative multi flexible mobile manipulator via recursive Gibbs-Appell formulation. Appl. Math. Model. 2019, 65, 443–463. [Google Scholar] [CrossRef]
- Shafei, A.M.; Shafei, H.R. A systematic method for the hybrid dynamic modeling of open kinematic chains confined in a closed environment. Multibody Syst. Dyn. 2017, 38, 21–42. [Google Scholar] [CrossRef]
- Korayem, M.H.; Dehkordi, S.F. Derivation of dynamic equation of viscoelastic manipulator with revolute-prismatic joint using recursive Gibbs-Appell formulation. Nonlinear Dyn. 2017, 89, 2041–2064. [Google Scholar] [CrossRef]
- Vlase, S.; Marin, M.; Scutaru, M.L. Maggi’s equations used in the finite element analysis of the multibody systems with elastic elements. Mathematics 2020, 8, 399. [Google Scholar] [CrossRef]
- Ursu-Fisher, N. Elements of Analytical Mechanics; House of Science Book Press: Cluj-Napoca, Romania, 2015. [Google Scholar]
- Negrean, I.; Crișan, A.-D.; Vlase, S. A New Approach in Analytical Dynamics of Mechanical Systems. Symmetry 2020, 12, 95. [Google Scholar] [CrossRef] [Green Version]
- Vlase, S.; Negrean, I.; Marin, M.; Nastac, S. Kane’s Method-Based Simulation and Modeling Robots with Elastic Elements, Using Finite Element Method. Mathematics 2020, 8, 805. [Google Scholar] [CrossRef]
- European New Car Assessment Programme (Euro NCAP), Frontal Impact Testing Protocol Version 6.0 August. Available online: https://cdn.euroncap.com/media/1457/euro-ncap-frontal-protocol-version-60.pdf (accessed on 29 September 2022).
- Kallieris, D.; Rizzetti, A.; Mattern, R. The Biofidelity of Hybrid III Dummies, Institute of Legal Medicine University of Heidelberg. Available online: http://www.ircobi.org/wordpress/downloads/irc1995/pdf_files/1995_10.pdf (accessed on 29 September 2022).
- Fortuna, L.; Buscarino, A. Microrobots in Micromachines. Micromachines 2022, 13, 1207. [Google Scholar] [CrossRef] [PubMed]
- Fortuna, L.; Buscarino, A. Smart Materials. Materials 2022, 15, 6307. [Google Scholar] [CrossRef] [PubMed]
- Injury Criteria for Side Impact Dummies, May 2004, By Shashi Kuppa. Available online: https://www.nhtsa.gov/ (accessed on 29 September 2022).
- Hybrid III 50th Male FE|Humanetics. Available online: humaneticsgroup.com (accessed on 25 September 2022).
- Li, X. Simulation System of Car Crash Test in C-NCAP Analysis Based on an Improved Apriori Algorithm. Phys. Procedia 2012, 25, 2066–2071. [Google Scholar] [CrossRef] [Green Version]
- Untaroiu, C.D.; Shina, J.; Ivarssona, J.; Crandalla, J.R.; Subita, D.; Takahashib, Y.; Akiyamab, A.; Kikuchi, Y. A study of the pedestrian impact kinematics using finite element dummy models: The corridors and dimensional analysis scaling of upper-body trajectories. Int. J. Crashworthiness 2008, 13, 469–478. [Google Scholar] [CrossRef]
- Quoc, P.M.; Krzikalla, D.; Mesicek, J.; Petru, J.; Smiraus, J.; Sliva, A.; Poruba, Z. On Aluminum Honeycomb Impact Attenuator Designs for Formula Student Competitions. Symmetry 2020, 12, 1647. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Marin, M.; Zeeshan, A.; Abdelsalam, S.I. Recent trends in computational fluid dynamics. Front. Phys. 2020, 8, 593111. [Google Scholar] [CrossRef]
Materials | Young’s Modulus [MPa] | Poison Ratio [-] | Density [tone/mm3] | Yield Stress [MPa] | Nominal Ultimate Stress [MPa] | Elongation at Nom UTS [mm/mm] |
---|---|---|---|---|---|---|
Al 7050 T7351 | 71,018.5 | 0.33 | 2.70 × 10−9 | 330 | 470 | 0.1 |
S235JR (OL37) | 178,090 | 0.3 | 7.86 × 10−9 | 315 | 435 | 0.15 |
S355JR (OL52) | 200,000 | 0.3 | 7.86 × 10−9 | 500 | 610 | 0.15 |
Geometry Solution | ID RUN | Material | Plate Thickness [mm] |
---|---|---|---|
Rectangular IA | RUN 1 | Al 7050 T7351 | 2 |
RUN 2 | 2.5 | ||
RUN 3 | 3 | ||
RUN 4 | 3.5 | ||
RUN 5 | S235JR (OL37) | 2 | |
RUN 6 | 2.5 | ||
RUN 7 | 3 | ||
RUN 8 | 3.5 | ||
RUN 9 | S355JR (OL52) | 2 | |
RUN 10 | 2.5 | ||
RUN 11 | 3 | ||
RUN 12 | 3.5 |
Geometry Solution | ID RUN | Material | Plate Thickness [mm] |
---|---|---|---|
Cylindrical IA | RUN 13 | Al 7050 T7351 | 2 |
RUN 14 | 2.5 | ||
RUN 15 | 3 | ||
RUN 16 | 3.5 | ||
RUN 17 | S235JR (OL37) | 2 | |
RUN 18 | 2.5 | ||
RUN 19 | 3 | ||
RUN 20 | 3.5 | ||
RUN 21 | S355JR (OL52) | 2 | |
RUN 22 | 2.5 | ||
RUN 23 | 3 | ||
RUN 24 | 3.5 |
Scenario | Material | Thickness Plate [mm] | Peak g—Deceleration | Average g—Deceleration | Internal Energy (IE)—J | ||||
---|---|---|---|---|---|---|---|---|---|
Pelvis | Thorax | Head | Pelvis | Thorax | Head | ||||
1 | Al 7050 | 2 | 40.43 | 34.93 | 42.14 | 15.9 | 15.5 | 18.62 | 5906.13 |
2 | 2.5 | 29.26 | 31.4 | 40.88 | 12.8 | 14.08 | 17.07 | 5866.71 | |
3 | 3 | 49.37 | 42.06 | 34.44 | 12.37 | 11.94 | 17.65 | 5797.2 | |
4 | 3.5 | 62.14 | 47.42 | 60.33 | 21.17 | 20.09 | 28.77 | 5739.36 | |
5 | OL37 | 2 | 44.54 | 36.53 | 45.62 | 16.7 | 16.03 | 18.7 | 5938.3 |
6 | 2.5 | 32.85 | 39.17 | 44.37 | 14.32 | 15.23 | 19.35 | 5914.62 | |
7 | 3 | 39.34 | 36.65 | 28.36 | 10.76 | 10.94 | 15.53 | 5884.71 | |
8 | 3.5 | 61.98 | 48.26 | 64.35 | 20.58 | 20 | 28.78 | 5780.13 | |
9 | OL 52 | 2 | 35.58 | 35.28 | 23.76 | 10.97 | 11.38 | 14.97 | 5967.07 |
10 | 2.5 | 63.43 | 54 | 68.77 | 21.27 | 20.94 | 30.22 | 5738.44 | |
11 | 3 | 60.24 | 48.36 | 57.63 | 20.3 | 19.15 | 28.34 | 5863.81 | |
12 | 3.5 | 67.34 | 64.55 | 64.68 | 22.01 | 22.49 | 34.37 | 5805.65 |
Scenario | Material | Thickness Plate [mm] | Peak g—Deceleration | Average g—Deceleration | Internal Energy (IE)—J | ||||
---|---|---|---|---|---|---|---|---|---|
Pelvis | Thorax | Head | Pelvis | Thorax | Head | ||||
1 | Al 7050 | 2 | 54.77 | 56.51 | 60.05 | 16.68 | 16.99 | 21.15 | 5675.02 |
2 | 2.5 | 37.23 | 43.92 | 51.38 | 14.91 | 15.65 | 19.72 | 5739.07 | |
3 | 3 | 25.84 | 29.11 | 31.47 | 10.71 | 11.30 | 15.00 | 5875.61 | |
4 | 3.5 | 30.07 | 28.68 | 35.57 | 11.76 | 12.30 | 15.69 | 5934.86 | |
5 | OL37 | 2 | 54.97 | 51.69 | 57.15 | 16.65 | 16.62 | 20.56 | 5728.54 |
6 | 2.5 | 34.28 | 42.34 | 47.91 | 13.95 | 15.11 | 19.41 | 5742.9 | |
7 | 3 | 25.05 | 27.72 | 32.78 | 11.10 | 11.87 | 15.56 | 5950.85 | |
8 | 3.5 | 30.21 | 30.90 | 35.64 | 12.14 | 13.27 | 16.17 | 5968.51 | |
9 | OL 52 | 2 | 45.31 | 45.03 | 49.01 | 15.66 | 15.79 | 19.78 | 5811.28 |
10 | 2.5 | 30.45 | 34.78 | 38.52 | 12.58 | 13.27 | 16.57 | 5831.96 | |
11 | 3 | 31.98 | 27.36 | 33.26 | 12.08 | 12.98 | 16.25 | 5986.03 | |
12 | 3.5 | 33.38 | 31.78 | 29.45 | 11.25 | 12.45 | 15.21 | 5986.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itu, C.; Vlase, S. Impact Attenuator Design for Improvement of Racing Car Drivers’ Safety. Symmetry 2023, 15, 159. https://doi.org/10.3390/sym15010159
Itu C, Vlase S. Impact Attenuator Design for Improvement of Racing Car Drivers’ Safety. Symmetry. 2023; 15(1):159. https://doi.org/10.3390/sym15010159
Chicago/Turabian StyleItu, Calin, and Sorin Vlase. 2023. "Impact Attenuator Design for Improvement of Racing Car Drivers’ Safety" Symmetry 15, no. 1: 159. https://doi.org/10.3390/sym15010159
APA StyleItu, C., & Vlase, S. (2023). Impact Attenuator Design for Improvement of Racing Car Drivers’ Safety. Symmetry, 15(1), 159. https://doi.org/10.3390/sym15010159