# Weak Deflection Angle, Hawking Radiation and Greybody Bound of Reissner–Nordström Black Hole Corrected by Bounce Parameter

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Black Bounce Reissner–Nordström Spacetime

## 3. Plasma-Influenced Deflection Angle

**Graphical Behaviour:**Now we look into the graphical behavior of the black bounce Reissner–Nordström BH’s deflection angle $\tilde{\alpha}$ relative to the impact parameter b, for the fixed value of mass m and charge Q, while varying bounce parameter a and plasma term.

## 4. Dark Matter’s Influence on Deflection Angle

## 5. Hawking Radiation

## 6. Greybody Factor

#### Graphical Analysis

## 7. Shadow Behavior

## 8. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Einstein, A. Lens-Like Action of a Star by the Deviation of Light in the Gravitational Field. Science
**1936**, 84, 506–507. [Google Scholar] [CrossRef] [PubMed][Green Version] - Penrose, R. Gravitational Collapse and Space-Time Singularities. Phys. Rev. Lett.
**1965**, 14, 57–59. [Google Scholar] [CrossRef][Green Version] - Ansoldi, S. Spherical black holes with regular center: A Review of existing models including a recent realization with Gaussian sources. In Proceedings of the Conference on Black Holes and Naked Singularities, Milan, Italy, 10–12 May 2007. [Google Scholar]
- Bardeen, J.M. Non-singular general-relativistic gravitational collapse. In Proceedings of the International Conference GR5, Tbilisi, GA, USA, 9–13 September 1968; p. 174. [Google Scholar]
- Ayon-Beato, E.; Garcıa, A. New regular black hole solution from nonlinear electrodynamics. Phys. Lett. B
**1999**, 464, 25–29. [Google Scholar] [CrossRef][Green Version] - Dymnikova, I. Vacuum nonsingular black hole. Gen. Relat. Gravit.
**1992**, 24, 235–242. [Google Scholar] [CrossRef] - Lemos, J.P.S.; Zanchin, V.T. Regular black holes: Electrically charged solutions, Reissner-Nordström outside a de Sitter core. Phys. Rev. D
**2011**, 83, 124005. [Google Scholar] [CrossRef][Green Version] - Kumar, A.; Ghosh, S.G.; Maharaj, S.D. Nonsingular black hole chemistry. Phys. Dark Universe
**2020**, 30, 100634. [Google Scholar] [CrossRef] - Eichhorn, A.; Held, A. Image features of spinning regular black holes based on a locality principle. Eur. Phys. J. C
**2021**, 81, 933. [Google Scholar] [CrossRef] - Hawking, S.W. Particle creation by black holes. Commun. Math. Phys.
**1975**, 43. [Google Scholar] [CrossRef] - Hassanabadi, H.; Chung, W.S.; Lütfüoğlu, B.C.; Maghsoodi, E. Effects of a new extended uncertainty principle on Schwarzschild and Reissner–Nordström black holes thermodynamics. Int. J. Mod. Phys. A
**2021**, 36, 2150036. [Google Scholar] [CrossRef] - Hassanabadi, S.; Kříž, J.; Chung, W.S.; Lütfüoğlu, B.C.; Maghsoodi, E.; Hassanabadi, H. Thermodynamics of the Schwarzschild and Reissner–Nordström black holes under higher-order generalized uncertainty principle. Eur. Phys. J. Plus
**2021**, 136, 918. [Google Scholar] [CrossRef] - Chen, H.; Lütfüoğlu, B.C.; Hassanabadi, H.; Long, Z.W. Thermodynamics of the Reissner-Nordström black hole with quintessence matter on the EGUP framework. Phys. Lett. B
**2022**, 827, 136994. [Google Scholar] [CrossRef] - Zhang, Y.-P.; Wei, S.W.; Liu, Y.X. Topological approach to derive the global Hawking temperature of (massive) BTZ black hole. Phys. Lett. B
**2020**, 810, 135788. [Google Scholar] [CrossRef] - Övgün, A.; Sakalli, I. Hawking radiation via Gauss–Bonnet theorem. Ann. Phys.
**2020**, 413, 168071. [Google Scholar] [CrossRef][Green Version] - Kruglov, S.I. Magnetically charged black hole in framework of nonlinear electrodynamics model. Int. J. Mod. Phys. A
**2018**, 33, 1850023. [Google Scholar] [CrossRef] - Fernando, S. Greybody factors of charged dilaton black holes in 2 + 1 dimensions. Gen. Relativ. Gravit.
**2005**, 37, 461–481. [Google Scholar] [CrossRef][Green Version] - Kim, W.; Oh, J.J. Greybody Factor and Hawking Radiation of Charged Dilatonic Black Holes. J. Korean Phys. Soc.
**2008**, 52, 986–991. [Google Scholar] [CrossRef][Green Version] - Escobedo, J. Greybody Factors. Master’s Thesis, University of Amsterdam, Amsterdam, The Netherlands, 2008. [Google Scholar]
- Parikh, M.K.; Wilczek, F. Hawking Radiation As Tunneling. Phys. Rev. Lett.
**2000**, 85, 5042–5045. [Google Scholar] [CrossRef][Green Version] - Fleming, C.H. Hawking Radiation as Tunneling. In University of Maryland Department of Physics Technical Report; UMD Physics: College Park, MD, USA, 2005. [Google Scholar]
- Visser, M. Some general bounds for one-dimensional scattering. Phys. Rev. A
**1999**, 59, 427–438. [Google Scholar] [CrossRef][Green Version] - Boonserm, P.; Visser, M. Bounding the greybody factors for Schwarzschild black holes. Phys. Rev. D
**2008**, 78, 101502. [Google Scholar] [CrossRef][Green Version] - Javed, W.; Hussain, I.; Övgün, A. Weak deflection angle of Kazakov–Solodukhin black hole in plasma medium using Gauss–Bonnet theorem and its greybody bonding. Eur. Phys. J. Plus
**2022**, 137. [Google Scholar] [CrossRef] - Hoekstra, H.; Bartelmann, M.; Dahle, H.; Israel, H.; Limousin, M.; Meneghetti, M. Masses of galaxy clusters from gravitational lensing. Space Sci. Rev.
**2013**, 177, 75–118. [Google Scholar] [CrossRef][Green Version] - Brouwer, M.M.; Demchenko, V.; Harnois-Déraps, J.; Bilicki, M.; Heymans, C.; Hoekstra, H.; Kuijken, K.; Alpaslan, M.; Brough, S.; Cai, Y.C.; et al. Studying galaxy troughs and ridges using weak gravitational lensing with the Kilo-Degree Survey. Mon. Not. Roy. Astron. Soc
**2018**, 481, 5189. [Google Scholar] [CrossRef][Green Version] - Vanderveld, R.A.; Mortonson, M.J.; Hu, W.; Eifler, T. Testing dark energy paradigms with weak gravitational lensing. Phys. Rev. D
**2012**, 85, 103518. [Google Scholar] [CrossRef][Green Version] - Keeton, C.R.; Kochanek, C.S.; Falco, E.E. The Optical Properties of Gravitational Lens Galaxies as a Probe of Galaxy Structure and Evolution. Astrophys. J.
**1998**, 509, 561–578. [Google Scholar] [CrossRef][Green Version] - Bhadra, A. Gravitational lensing by a charged black hole of string theory. Phys. Rev. D
**2003**, 67, 103009. [Google Scholar] [CrossRef][Green Version] - Whisker, R. Strong gravitational lensing by braneworld black holes. Phys. Rev. D
**2005**, 71, 064004. [Google Scholar] [CrossRef][Green Version] - Chen, S.; Jing, J. Strong field gravitational lensing in the deformed Hořava-Lifshitz black hole. Phys. Rev. D
**2009**, 80, 024036. [Google Scholar] [CrossRef][Green Version] - Nandi, K.K.; Zhang, Y.Z.; Zakharov, A.V. Gravitational lensing by wormholes. Phys. Rev. D
**2006**, 74, 024020. [Google Scholar] [CrossRef][Green Version] - Eiroa, E.F.; Romero, G.E.; Torres, D.F. Reissner-Nordström black hole lensing. Phys. Rev. D
**2002**, 66, 024010. [Google Scholar] [CrossRef][Green Version] - Kumaran, Y.; Övgün, A. Weak Deflection Angle of Extended Uncertainty Principle Black Holes. Chin. Phys. C
**2020**, 44, 025101. [Google Scholar] [CrossRef] - Kumaran, Y.; Övgün, A. Deflection Angle and Shadow of the Reissner-Nordström Black Hole with Higher-Order Magnetic Correction in Einstein-Nonlinear-Maxwell Fields. Symmetry
**2022**, 14, 2054. [Google Scholar] [CrossRef] - Werner, M.C. Gravitational lensing in the Kerr-Randers optical geometry. Gen. Relat. Gravi.
**2012**, 44, 3047. [Google Scholar] [CrossRef][Green Version] - Ishihara, A.; Suzuki, Y.; Ono, T.; Kitamura, T.; Asada, H. Gravitational bending angle of light for finite distance and the Gauss-Bonnet theorem. Phys. Rev. D
**2016**, 94, 084015. [Google Scholar] [CrossRef][Green Version] - Ishihara, A.; Suzuki, Y.; Ono, T.; Asada, H. Finite-distance corrections to the gravitational bending angle of light in the strong deflection limit. Phys. Rev. D
**2017**, 95, 044017. [Google Scholar] [CrossRef][Green Version] - Ono, T.; Ishihara, A.; Asada, H. Gravitomagnetic bending angle of light with finite-distance corrections in stationary axisymmetric spacetimes. Phys. Rev. D
**2017**, 96, 104037. [Google Scholar] [CrossRef][Green Version] - Crisnejo, G.; Gallo, E. Weak lensing in a plasma medium and gravitational deflection of massive particles using the Gauss-Bonnet theorem. A unified treatment. Phys. Rev. D
**2018**, 97, 124016. [Google Scholar] [CrossRef][Green Version] - Li, Z.; Övgün, A. Finite-distance gravitational deflection of massive particles by a Kerr-like black hole in the bumblebee gravity model. Phys. Rev. D
**2020**, 101, 024040. [Google Scholar] [CrossRef][Green Version] - Li, Z.; Zhang, G.; Övgün, A. Circular orbit of a particle and weak gravitational lensing. Phys. Rev. D
**2020**, 101, 124058. [Google Scholar] [CrossRef] - Oort, J.H. The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems. Astron. Inst. Netherlands
**1932**, 6, 249. [Google Scholar] - Zwicky, F. On the Masses of Nebulae and of Clusters of Nebulae. Astrophys. J.
**1937**, 86, 217. [Google Scholar] [CrossRef] - Feng, J.L. Dark Matter Candidates from Particle Physics and Methods of Detection. Astrophys. J. Supple. Ser.
**2010**, 48, 495–545. [Google Scholar] [CrossRef] - Jarosik, N.; Bennett, C.L.; Dunkley, J.; Gold, B.; Greason, M.R.; Halpern, M.; Hill, R.S.; Hinshaw, G.; Kogut, A.; Komatsu, E.; et al. Seven-year wilkinson microwave anisotropy probe (WMAP*) observations: Sky maps, systematic errors, and basic results. Astrophys. J. Suppl. Ser.
**2011**, 192, 14. [Google Scholar] [CrossRef][Green Version] - Övgün, A. Deflection Angle of Photons through Dark Matter by Black Holes and Wormholes Using Gauss–Bonnet Theorem. Universe
**2019**, 5, 115. [Google Scholar] [CrossRef][Green Version] - Pantig, R.C.; Övgün, A. Dark matter effect on the weak deflection angle by black holes at the center of Milky Way and M87 galaxies. Eur. Phys. J. C
**2022**, 82, 391. [Google Scholar] [CrossRef] - Pantig, R.C.; Rodulfo, E.T. Weak deflection angle of a dirty black hole. Chin. J. Phys.
**2020**, 66, 691–702. [Google Scholar] [CrossRef] - Pantig, R.C.; Övgün, A. Black hole in quantum wave dark matter. Fortsch. Phys.
**2022**, 2022, 2200164. [Google Scholar] [CrossRef] - Pantig, R.C.; Övgün, A. Dehnen halo effect on a black hole in an ultra-faint dwarf galaxy. JCAP
**2022**, 08, 056. [Google Scholar] [CrossRef] - Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azuly, R. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett.
**2019**, 875, L1. [Google Scholar] [CrossRef] - Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett.
**2022**, 930, L12. [Google Scholar] [CrossRef] - Bardeen, J.M.; Press, W.H.; Teukolsky, S.A. Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation. Astrophys. J.
**1972**, 178, 347–370. [Google Scholar] [CrossRef] - Synge, J.L. The Escape of Photons from Gravitationally Intense Stars. Mon. Not. Roy. Astron. Soc.
**1966**, 131, 463–466. [Google Scholar] [CrossRef] - Luminet, J.P. Image of a spherical black hole with thin accretion disk. Astron. Astrophys.
**1979**, 75, 228–235. [Google Scholar] - Narayan, R.; Johnson, M.D.; Gammie, C.F. The Shadow of a Spherically Accreting Black Hole. Astrophys. J.
**2019**, 885, L33. [Google Scholar] [CrossRef][Green Version] - Guo, Y.; Miao, Y.G. Charged black-bounce spacetimes: Photon rings, shadows and observational appearances. Nucl. Phys. B
**2022**, 983, 115938. [Google Scholar] [CrossRef] - Pantig, R.C.; Yu, P.K.; Rodulfo, E.T.; Övgün, A. Shadow and weak deflection angle of extended uncertainty principle black hole surrounded with dark matter. Ann. Phys.
**2022**, 436, 168722. [Google Scholar] [CrossRef] - Konoplya, R.A.; Zhidenko, A. Solutions of the Einstein Equations for a Black Hole Surrounded by a Galactic Halo. Astrophys. J.
**2022**, 933, 166. [Google Scholar] [CrossRef] - Konoplya, R.A. Shadow of a black hole surrounded by dark matter. Phys. Lett. B
**2019**, 795, 1–6. [Google Scholar] [CrossRef] - Xu, Z.; Hou, X.; Gong, X.; Wang, J. Black Hole Space-time In Dark Matter Halo. JCAP
**2018**, 09, 038. [Google Scholar] [CrossRef][Green Version] - Xu, Z.; Gong, X.; Zhang, S.N. Black hole immersed dark matter halo. Phys. Rev. D
**2020**, 101, 024029. [Google Scholar] [CrossRef] - Pantig, R.C.; Rodulfo, E.T. Rotating dirty black hole and its shadow. Chin. J. Phys.
**2020**, 68, 236–257. [Google Scholar] [CrossRef] - Javed, W.; Irshad, H.; Pantig, R.C.; Övgün, A. Weak Deflection Angle by Kalb-Ramond Traversable Wormhole in Plasma and Dark Matter Mediums. Universe
**2022**, 8, 599. [Google Scholar] [CrossRef] - Javed, W.; Riaz, S.; Pantig, R.C.; Övgün, A. Weak gravitational lensing in dark matter and plasma mediums for wormhole-like static aether solution. Eur. Phys. J. C
**2022**, 82, 1057. [Google Scholar] [CrossRef] - Jusufi, K.; Jamil, M.; Zhu, T. Shadows of Sgr A
^{*}black hole surrounded by superfluid dark matter halo. Eur. Phys. J. C**2020**, 80, 354. [Google Scholar] [CrossRef] - Nampalliwar, S.; Kumar, S.; Jusufi, K.; Wu, Q.; Jamil, M.; Salucci, P. Modeling the Sgr A* Black Hole Immersed in a Dark Matter Spike. Astrophys. J.
**2021**, 916, 116. [Google Scholar] [CrossRef] - Berry, T.; Simpson, A.; Visser, M. General class of “quantum deformed” regular black holes. Universe
**2021**, 7, 165. [Google Scholar] [CrossRef] - Huang, H.; Yang, J. Charged Ellis wormhole and black bounce. Phys. Rev. D
**2019**, 100, 124063. [Google Scholar] [CrossRef][Green Version] - Franzin, E.; Liberati, S.; Mazza, J.; Simpson, A.; Visser, M. Charged black-bounce spacetimes. J. Cosmo. Astropart. Phys.
**2021**, 2021, 036. [Google Scholar] [CrossRef] - Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys.
**1988**, 56, 395–412. [Google Scholar] [CrossRef][Green Version] - Hayward, S.A. Formation and Evaporation of Nonsingular Black Holes. Phys. Rev. Lett.
**2006**, 96, 031103. [Google Scholar] [CrossRef][Green Version] - Guo, Y.; Miao, Y.G. Bounce corrections to gravitational lensing, quasinormal spectral stability and gray-body factors of Reissner-Nordström black holes. arXiv
**2022**, arXiv:2201.02971. [Google Scholar] [CrossRef] - Lobo, F.S.N.; Rodrigues, M.E.; Silva, M.V.d.S.; Simpson, A.; Visser, M. Novel black-bounce spacetimes: Wormholes, regularity, energy conditions, and causal structure. Phys. Rev. D
**2021**, 103, 084052. [Google Scholar] [CrossRef] - Simpson, A.; Martín-Moruno, P.; Visser, M. Vaidya spacetimes, black-bounces, and traversable wormholes. Class. Quantum Gravity
**2019**, 36, 145007. [Google Scholar] [CrossRef] - Gibbons, G.W.; Werner, M.C. Applications of the Gauss–Bonnet theorem to gravitational lensing. Class. Quantum Grav.
**2008**, 25, 235009. [Google Scholar] [CrossRef] - Latimer, D.C. Dispersive light propagation at cosmological distances: Matter effects. Phys. Rev. D
**2013**, 88, 063517. [Google Scholar] [CrossRef][Green Version] - Gibbons, G.W.; Hawking, S.W. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D
**1977**, 15, 2738–2751. [Google Scholar] [CrossRef][Green Version] - Boonserm, P.; Visser, M. Bounding the Bogoliubov coefficients. Ann. Phys.
**2008**, 323, 2779–2798. [Google Scholar] [CrossRef][Green Version] - Boonserm, P. Rigorous Bounds on Transmission, Reflection and Bogoliubov Coefficients. Ph.D. Thesis, Victoria University Wellington, Wellington, New Zealand, 2009. [Google Scholar]
- Ngampitipan, T.; Boonserm, P. Bounding the greybody factors for non-rotating black holes. J. Mod. Phys. D
**2013**, 22, 1350058. [Google Scholar] [CrossRef][Green Version] - Perlick, V.; Tsupko, O.Y.; Bisnovatyi-Kogan, G.S. Influence of a plasma on the shadow of a spherically symmetric black hole. Phys. Rev. D
**2015**, 92, 104031. [Google Scholar] [CrossRef][Green Version] - Pantig, R.C.; Övgün, A. Testing dynamical torsion effects on the charged black hole’s shadow, deflection angle and greybody with M87* and Sgr. A* from EHT. Ann. Phys.
**2023**, 448, 169197. [Google Scholar] [CrossRef]

**Figure 2.**Bending angle’s variation $\tilde{\alpha}$ as a function of impact parameter b, for $Q=a=0.5m$.

**Figure 5.**The left panel shows the potential with $l=1$ and corresponding bound ${T}_{b}$ is shown in right panel.

**Figure 6.**The left panel shows the potential with $l=2$ and corresponding bound ${T}_{b}$ is shown in right panel.

**Figure 7.**Behavior of the shadow radius due to a static observer with varying location from the black bounce RN BH. Here, we used $Q=0.25m$.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Javed, W.; Atique, M.; Pantig, R.C.; Övgün, A. Weak Deflection Angle, Hawking Radiation and Greybody Bound of Reissner–Nordström Black Hole Corrected by Bounce Parameter. *Symmetry* **2023**, *15*, 148.
https://doi.org/10.3390/sym15010148

**AMA Style**

Javed W, Atique M, Pantig RC, Övgün A. Weak Deflection Angle, Hawking Radiation and Greybody Bound of Reissner–Nordström Black Hole Corrected by Bounce Parameter. *Symmetry*. 2023; 15(1):148.
https://doi.org/10.3390/sym15010148

**Chicago/Turabian Style**

Javed, Wajiha, Mehak Atique, Reggie C. Pantig, and Ali Övgün. 2023. "Weak Deflection Angle, Hawking Radiation and Greybody Bound of Reissner–Nordström Black Hole Corrected by Bounce Parameter" *Symmetry* 15, no. 1: 148.
https://doi.org/10.3390/sym15010148