The Effect of Linear Operators in Periodical Solutions of Ordinary Differential Equations
Abstract
1. Introduction
2. The Method of Solution
3. Numerical Examples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shashkov, M.; Steinberg, S. Conservative Finite-Difference Methods on General Grids; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Rao, S.S. The Finite Element Method in Engineering; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Szabó, B.; Babuśka, I. Finite Element Analysis: Method, Verification and Validation; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar]
- Javeed, S.; Baleanu, D.; Waheed, A.; Shaukat Khan, M.; Affan, H. Analysis of homotopy perturbation method for solving fractional order differential equations. Mathematics 2019, 7, 40. [Google Scholar] [CrossRef]
- Liao, S. Homotopy Analysis Method in Nonlinear Differential Equations; Higher Education Press: Beijing, China, 2012; pp. 153–165. [Google Scholar]
- Nadeem, M.; He, J.H.; Islam, A. The homotopy perturbation method for fractional differential equations: Part 1 Mohand transform. Int. J. Numer. Methods Heat Fluid Flow 2021, 31, 3490–3504. [Google Scholar] [CrossRef]
- Kumar, M. Recent development of Adomian decomposition method for ordinary and partial differential equations. Int. J. Appl. Comput. Math. 2022, 8, 1–25. [Google Scholar] [CrossRef]
- Li, W.; Pang, Y. Application of Adomian decomposition method to nonlinear systems. Adv. Differ. Equ. 2020, 2020, 67. [Google Scholar] [CrossRef]
- Ziane, D.; Belgacem, R.; Bokhari, A. A new modified Adomian decomposition method for nonlinear partial differential equations. Open J. Math. Anal. 2019, 3, 81–90. [Google Scholar] [CrossRef]
- Ziane, D.; Cherif, M.H.; Cattani, C.; Belghaba, K. Yang-Laplace Decomposition Method for Nonlinear System of Local Fractional Partial Differential Equations. Appl. Math. Nonlinear Sci. 2019, 4, 489–502. [Google Scholar] [CrossRef]
- Rehman, A.U.; Riaz, M.B.; Saeed, S.T.; Jarad, F.; Jasim, H.N.; Enver, A. An Exact and Comparative Analysis of MHD Free Convection Flow of Water-Based Nanoparticles via CF Derivative. Math. Probl. Eng. 2022, 2022, 9977188. [Google Scholar] [CrossRef]
- Big-Alabo, A. A simple cubication method for approximate solution of nonlinear Hamiltonian oscillators. Int. J. Mech. Eng. Educ. 2020, 48, 241–254. [Google Scholar] [CrossRef]
- Big-Alabo, A.; Ekpruke, E.O.; Ossia, C.V. Quasi-static quintication method for periodic solution of strong nonlinear oscillators. Sci. Afr. 2021, 11, e00704. [Google Scholar] [CrossRef]
- Firdous, H.; Saeed, S.T.; Ahmad, H.; Askar, S. Using Non-Fourier’s Heat Flux and Non-Fick’s Mass Flux Theory in the Radiative and Chemically Reactive Flow of Powell-Eyring Fluid. Energies 2021, 14, 6882. [Google Scholar] [CrossRef]
- Younesian, D.; Askari, H.; Saadatnia, Z.; Yildirim, A. Periodic solutions for the generalized nonlinear oscillators containing fraction order elastic force. Int. J. Nonlinear Sci. Numer. Simul. 2010, 11, 1027–1032. [Google Scholar] [CrossRef]
- Liu, C.S.; Chang, C.W.; Chen, Y.W.; Chang, Y.S. Periodic Orbits of Nonlinear Ordinary Differential Equations Computed by a Boundary Shape Function Method. Symmetry 2022, 14, 1313. [Google Scholar] [CrossRef]
- Liu, C.S. Linearized homotopy perturbation method for two nonlinear problems of duffing equations. J. Math. Res. 2021, 13, 10. [Google Scholar] [CrossRef]
- Liu, C.S.; Chen, Y.W. A simplified Lindstedt-Poincaré method for saving computational cost to determine higher order nonlinear free vibrations. Mathematics 2021, 9, 3070. [Google Scholar] [CrossRef]
- Qian, D.; Li, X. Periodic solutions for ordinary differential equations with sublinear impulsive effects. J. Math. Anal. Appl. 2005, 303, 288–303. [Google Scholar] [CrossRef][Green Version]
- Zu, J. Existence and uniqueness of periodic solution for nonlinear second-order ordinary differential equations. Bound. Value Probl. 2011, 2011, 1–11. [Google Scholar] [CrossRef][Green Version]
- Aksoy, N.Y. The Solvability of First Type Boundary Value Problem for a Schrödinger Equation. Appl. Math. Nonlinear Sci. 2020, 5, 211–220. [Google Scholar] [CrossRef]
- Arslan, D. The Comparison Study of Hybrid Method with RDTM for Solving Rosenau-Hyman Equation. Appl. Math. Nonlinear Sci. 2020, 5, 267–274. [Google Scholar] [CrossRef]
- Burton, T.A. Stability and Periodic Solutions of Ordinary and Functional Differential Equations; Courier Corporation: Chelmsford, MA, USA, 2014. [Google Scholar]
- Chiu, K.S.; Li, T. Oscillatory and periodic solutions of differential equations with piecewise constant generalized mixed arguments. Math. Nachr. 2019, 292, 2153–2164. [Google Scholar] [CrossRef]
- Pankov, A.A. Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 55. [Google Scholar]
- Yokus, A.; Gulbahar, S. Numerical Solutions with Linearization Techniques of the Fractional Harry Dym Equation. Appl. Math. Nonlinear Sci. 2019, 4, 35–42. [Google Scholar] [CrossRef]
- Jiang, W.; Cui, M.; Lin, Y. Anti-periodic solutions for Rayleigh-type equations via the reproducing kernel Hilbert space method. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1754–1758. [Google Scholar] [CrossRef]
- De Jeu, M.; Jiang, X. Riesz representation theorems for positive linear operators. Banach J. Math. Anal. 2022, 16, 1–40. [Google Scholar] [CrossRef]
- Jäntschi, L. The eigenproblem translated for alignment of molecules. Symmetry 2019, 11, 1027. [Google Scholar] [CrossRef]
- North, G.R. Empirical orthogonal functions and normal modes. J. Atmos. Sci. 1984, 41, 879–887. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Aslefallah, M. Reproducing Kernel Hilbert Space (RKHS) method for solving singular perturbed initial value problem. Theory Approx. Appl. 2016, 10, 1–12. [Google Scholar]
- Chen, S.B.; Soradi-Zeid, S.; Dutta, H.; Mesrizadeh, M.; Jahanshahi, H.; Chu, Y.M. Reproducing kernel Hilbert space method for nonlinear second order singularly perturbed boundary value problems with time-delay. Chaos Solitons Fractals 2021, 144, 110674. [Google Scholar] [CrossRef]
- Farzaneh Javan, S.; Abbasbandy, S.; Araghi, F.; Ali, M. Application of reproducing kernel Hilbert space method for solving a class of nonlinear integral equations. Math. Probl. Eng. 2017, 2017, 7498136. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Azarnavid, B.; Alhuthali, M.S. A shooting reproducing kernel Hilbert space method for multiple solutions of nonlinear boundary value problems. J. Comput. Appl. Math. 2015, 279, 293–305. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Azarnavid, B. Some error estimates for the reproducing kernel Hilbert spaces method. J. Comput. Appl. Math. 2016, 296, 789–797. [Google Scholar] [CrossRef]
- Azarnavid, B.; Parvaneh, F.; Abbasbandy, S. Picard-reproducing kernel hilbert space method for solving generalized singular nonlinear Lane-Emden type equations. Math. Model. Anal. 2015, 20, 754–767. [Google Scholar] [CrossRef]
- Linz, P. Theoretical Numerical Analysis; Courier Dover Publications: Mineola, NY, USA, 2019. [Google Scholar]
- Han, B. Framelets and Wavelets. Algorithms, Analysis, and Applications, Applied and Numerical Harmonic Analysis; Birkhäuser Cham: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Papageorgiou, N.S.; Rädulescu, V.D.; Repovš, D.D. Nonlinear Analysis-Theory and Methods; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Zhou, R.; Shi, S.; Li, W. Renormalization group approach to boundary layer problems. Commun. Nonlinear Sci. Numer. Simul. 2019, 71, 220–230. [Google Scholar] [CrossRef]
- Bender, C.M.; Orszag, S.A. Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Liang, S.; Liu, S. An open problem on the optimality of an asymptotic solution to Duffing’s nonlinear oscillation problem. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 4189–4195. [Google Scholar] [CrossRef]
- Van Gorder, R.A. Solutions to a novel Casimir equation for the Ito system. Commun. Theor. Phys. 2011, 56, 801. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Van Gorder, R.A.; Hajiketabi, M.; Mesrizadeh, M. Existence and numerical simulation of periodic traveling wave solutions to the Casimir equation for the Ito system. Commun. Nonlinear Sci. Numer. Simul. 2015, 27, 254–262. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soradi-Zeid, S.; Mesrizadeh, M.; Cattani, C. The Effect of Linear Operators in Periodical Solutions of Ordinary Differential Equations. Symmetry 2022, 14, 1645. https://doi.org/10.3390/sym14081645
Soradi-Zeid S, Mesrizadeh M, Cattani C. The Effect of Linear Operators in Periodical Solutions of Ordinary Differential Equations. Symmetry. 2022; 14(8):1645. https://doi.org/10.3390/sym14081645
Chicago/Turabian StyleSoradi-Zeid, Samaneh, Mehdi Mesrizadeh, and Carlo Cattani. 2022. "The Effect of Linear Operators in Periodical Solutions of Ordinary Differential Equations" Symmetry 14, no. 8: 1645. https://doi.org/10.3390/sym14081645
APA StyleSoradi-Zeid, S., Mesrizadeh, M., & Cattani, C. (2022). The Effect of Linear Operators in Periodical Solutions of Ordinary Differential Equations. Symmetry, 14(8), 1645. https://doi.org/10.3390/sym14081645