# A Numerical Approach for Analysing the Moving Sofa Problem

## Abstract

**:**

## 1. Introduction

## 2. Sofa Generation

## 3. Application of the Proposed Method

#### 3.1. Gerver’s Solution

#### 3.2. Romik’s Solution

#### 3.3. Asymmetrical Sofa

## 4. Conclusions

## Funding

## Institutional Review Board Statement

## Conflicts of Interest

## Appendix A. Auxiliary Theorems

**Theorem**

**A1.**

**Proof.**

**Theorem**

**A2.**

**Proof.**

## References

- Moser, L. Moving furniture through a hallway. SIAM Rev.
**1966**, 8, 381. [Google Scholar] [CrossRef] - Croft, H.T.; Falconer, K.; Guy, R.K. Unsolved Problems in Geometry: Unsolved Problems in Intuitive Mathematics; Springer Science & Business Media: Berlin, Germany, 2012; Volume 2. [Google Scholar]
- Hammersley, J.M. On the enfeeblement of mathematical skills by modern mathematics and by similar soft intellectual trash in schools and universities. Educ. Stud. Math.
**1968**, 1, 17. [Google Scholar] [CrossRef] [Green Version] - Gerver, J.L. On Moving a Sofa Around a Corner. Geom. Dedicata
**1992**, 42, 267–283. [Google Scholar] [CrossRef] - Wagner, N.R. The sofa problem. Am. Math. Mon.
**1976**, 83, 188–189. [Google Scholar] [CrossRef] - Maruyama, K. An approximation method for solving the sofa problem. Int. J. Comput. Inf. Sci.
**1973**, 2, 29–48. [Google Scholar] [CrossRef] [Green Version] - Gibbs, P. A Computational Study of Sofas and Cars. Comput. Sci.
**2014**, 2, 1–5. [Google Scholar] - Kallus, Y.; Romik, D. Improved upper bounds in the moving sofa problem. Adv. Math.
**2018**, 340, 960–982. [Google Scholar] [CrossRef] [Green Version] - Song, N. A Variational Approach to the Moving Sofa Problem; Senior Project; Bard College: Annandale-On-Hudson, NY, USA, 2016. [Google Scholar]
- Gerd, E.; Henrik, E.; Kimmo, E. Moving a food trolley around a corner. Theor. Comput. Sci.
**1998**, 191, 193–203. [Google Scholar] [CrossRef] [Green Version] - Wilson, D.; Davenport, J.H.; England, M.; Bradford, R. A “piano movers” problem reformulated. In Proceedings of the 2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, 23–26 September 2013; pp. 53–60. [Google Scholar]
- Schwartz, J.T.; Sharir, M. On the “piano movers” problem I. The case of a two-dimensional rigid polygonal body moving amidst polygonal barriers. Commun. Pure Appl. Math.
**1983**, 36, 345–398. [Google Scholar] [CrossRef] - Maddila, S.; Yap, C.K. Moving a polygon around the corner in a corridor. In Proceedings of the Second Annual Symposium on Computational Geometry, Yorktown Heights, NY, USA, 2–4 June 1986; pp. 187–192. [Google Scholar]
- Litvin, F.L.; Fuentes, A. Gear Geometry and Applied Theory; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar] [CrossRef]
- Batsch, M. A novel method of obtaining honing tool profile for machining gears with profile modifications. J. Manuf. Sci. Eng.
**2020**, 142, 091004. [Google Scholar] [CrossRef] - Polowniak, P.; Sobolak, M.; Marciniec, A. Mathematical model of the worm wheel tooth flank of a double-enveloping worm gear. Alex. Eng. J.
**2021**, 60, 3037–3046. [Google Scholar] [CrossRef] - Romik, D. Differential Equations and Exact Solutions in the Moving Sofa Problem. Exp. Math.
**2018**, 27, 316–330. [Google Scholar] [CrossRef] [Green Version]

**Figure 2.**Gerver’s sofa: (

**a**) path of movement; (

**b**) angle of rotation; (

**c**) envelopes of hallway; and (

**d**) shape of sofa.

**Figure 3.**Romik’s sofa: (

**a**) path of movement; (

**b**) angle of rotation; (

**c**) envelopes of hallway; and (

**d**) shape of sofa.

**Figure 5.**Asymmetrical sofa: (

**a**) path of movement; (

**b**) angle of rotation; (

**c**) envelopes of hallway; and (

**d**) shape of sofa.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Batsch, M.
A Numerical Approach for Analysing the Moving Sofa Problem. *Symmetry* **2022**, *14*, 1409.
https://doi.org/10.3390/sym14071409

**AMA Style**

Batsch M.
A Numerical Approach for Analysing the Moving Sofa Problem. *Symmetry*. 2022; 14(7):1409.
https://doi.org/10.3390/sym14071409

**Chicago/Turabian Style**

Batsch, Michał.
2022. "A Numerical Approach for Analysing the Moving Sofa Problem" *Symmetry* 14, no. 7: 1409.
https://doi.org/10.3390/sym14071409