Upper Bounds of the Third Hankel Determinant for Close-to-Convex Functions
Abstract
:1. Introduction
2. Preliminary Results
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Hayman, W.K. Multivalent Functions, 2nd ed.; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. Proc. Lond. Math. Soc. 1966, 3, 111–122. [Google Scholar] [CrossRef]
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Babalola, K.O. On |H3,1| Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2007, 6, 1–7. [Google Scholar]
- Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound for the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
- Lecko, A.; Sim, Y.J.; Śmiarowska, B. The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal. Oper. Theory 2019, 13, 2231–2238. [Google Scholar] [CrossRef] [Green Version]
- Zaprawa, P.; Obradović, M.; Tuneski, N. Third Hankel determinant for univalent starlike functions. RACSAM 2021, 115, 49. [Google Scholar] [CrossRef]
- Zaprawa, P. Third Hankel determinants for subclasses of univalent functions. Mediterr. J. Math. 2017, 14, 19. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.; Raza, M.; Tang, H.; Hussain, S.; Khan, H. Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Math. 2019, 17, 1615–1630. [Google Scholar] [CrossRef]
- Bansal, D.; Maharana, S.; Prajapat, J.K. Third order Hankel determinant for certain univalent functions. J. Korean Math. Soc. 2015, 52, 1139–1148. [Google Scholar] [CrossRef] [Green Version]
- Krishna, D.V.; Venkateswarlua, B.; RamReddy, T. Third Hankel determinant for bounded turning functions of order alpha. J. Niger. Math. Soc. 2015, 34, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malay. Math. Sci. Soc. 2019, 42, 767–780. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.; Srivastava, H.; Khan, N.; Ahmad, Q.; Khan, B.; Ali, I. Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry 2019, 11, 347. [Google Scholar] [CrossRef] [Green Version]
- Obradović, M.; Tuneski, N. Some properties of the class U. Ann. Univ. Mariae Curie-Skłodowska 2019, 73, 49–56. [Google Scholar]
- Raza, M.; Malik, S.N. Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli. J. Inequalities Appl. 2013, 2013, 412. [Google Scholar] [CrossRef] [Green Version]
- Tra̧bka-Wiȩcaw, K. On coefficient problems for functions connected with the sine function. Symmetry 2021, 13, 1179. [Google Scholar] [CrossRef]
- Zaprawa, P. Hankel determinants for univalent functions related to the exponential function. Symmetry 2019, 11, 1211. [Google Scholar] [CrossRef] [Green Version]
- Prajapat, J.K.; Bansal, D.; Maharana, S. Bounds on third Hankel determinant for certain classes of analytic functions. Stud. Univ. Babebs-Bolyai Math. 2017, 62, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Ozaki, S. On the theory of multivalent functions. II. Sci. Rep. Tokyo Bunrika Daigaku. Sect. A 1941, 4, 45–87. [Google Scholar]
- Umezawa, T. Analytic functions convex in one direction. J. Math. Soc. Jpn. 1952, 4, 194–202. [Google Scholar] [CrossRef]
- Singh, R.; Singh, S. Some sufficient conditions for univalence and starlikeness. Colloq. Math. 1982, 47, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Obradović, M.; Ponnusamy, S. Injectivity and starlikeness of section of a class of univalent functions. Contemp. Math. 2013, 591, 195–203. [Google Scholar]
- Obradović, M.; Ponnusamy, S.; Wirths, K.J. Coeffcient characterizations and sections for some univalent functions. Sib. Math. J. 2013, 54, 679–696. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Sharma, N.; Wirths, K. Logarithmic coefficients problems in families related to starlike and convex functions. J. Aust. Math. Soc. 2020, 109, 230–249. [Google Scholar] [CrossRef] [Green Version]
- Duren, P.L. Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
- Zaprawa, P. On Hankel determinant H2(3) for univalent functions. Results Math. 2018, 73, 89. [Google Scholar] [CrossRef] [Green Version]
- Carlson, F. Sur les coeffcients d’une fonction bornée dans le cercle unité. Ark. Mat. Astr. Fys. 1940, 27A, 8. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaprawa, P.; Tra̧bka-Wiȩcław, K. Upper Bounds of the Third Hankel Determinant for Close-to-Convex Functions. Symmetry 2022, 14, 885. https://doi.org/10.3390/sym14050885
Zaprawa P, Tra̧bka-Wiȩcław K. Upper Bounds of the Third Hankel Determinant for Close-to-Convex Functions. Symmetry. 2022; 14(5):885. https://doi.org/10.3390/sym14050885
Chicago/Turabian StyleZaprawa, Paweł, and Katarzyna Tra̧bka-Wiȩcław. 2022. "Upper Bounds of the Third Hankel Determinant for Close-to-Convex Functions" Symmetry 14, no. 5: 885. https://doi.org/10.3390/sym14050885
APA StyleZaprawa, P., & Tra̧bka-Wiȩcław, K. (2022). Upper Bounds of the Third Hankel Determinant for Close-to-Convex Functions. Symmetry, 14(5), 885. https://doi.org/10.3390/sym14050885