Topological Study of 6.82 D Carbon Allotrope Structure
Abstract
:1. Introduction
6.82 D Carbon Allotrope
2. Mathematical Terminologies
2.1. Multiplicative Topological Indices
2.2. VDB Indices Utilising M-Polynomial
2.3. VDB Entropy Measures for 6.82 Carbon Allotrope
2.4. IrregularityIndices for 6.82 Carbon Allotrope
3. Methods
4. Main Results
4.1. Numerical Aspects of 6.82 D Carbon Allotrope Structure: VDB Multiplicative Topological Indices
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
- (vii)
- (viii)
- (ix)
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
- (vii)
- (viii)
- (ix)
4.2. Numerical Aspects of 6.82 D Carbon Allotrope Structure: M-Polynomial Topological Indices
- ABC index
- GA index
- The first K-Banhatti index
- The second K-Banhatti index
- The first K-hyper Banhatti index
- The second K-hyper Banhatti index,,
- The Modified first K-Banhatti index,
- The Modified second K-Banhatti index,
- The Harmonic K-Banhatti index,
4.3. Numerical Aspects of 6.82 D Carbon Allotrope Structure: Degree Based Entropy Measures
4.4. Numerical Aspects of 6.82 D Carbon Allotrope Structure: Irregularity Indices for 6.82 Carbon Allotrope
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- West, D.B. Introduction to Graph Theory; Prentice Hall: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Mihalić, Z.; Trinajstić, N. A Graph-Theoretical Approach to Structure-Property Relationships. J. Chem. Educ. 1992, 69, 701. [Google Scholar] [CrossRef] [Green Version]
- Gutman, I.; Rušci´c, B.; Trinajsti´c, N.; Wilcox, C.F. Graph theory and molecular orbitals, XII. Acyclic polyenes. J. Chem. Phys. 1975, 62, 3399–3405. [Google Scholar] [CrossRef]
- Siddiqui, M.K.; Imran, M.; Ahmad, A. On Zagreb indices, Zagreb polynomials of some nanostardendrimers. Appl. Math. Comput. 2016, 280, 132–139. [Google Scholar] [CrossRef]
- García, I.; Fall, Y.; Gómez, G. Using Topological Indices to Predict Anti-Alzheimer and Anti-Parasitic GSK-3 Inhibitors by Multi-Target QSAR in Silico Screening. Molecules 2010, 15, 5408–5422. [Google Scholar] [CrossRef]
- Basak, S.C.; Mills, D.; Mumtaz, M.M.; Balasubramanian, K. Use of Topological Indices in Predicting Aryl Hydrocarbon Re-ceptor Binding Potency of Dibenzofurans: A Hierarchical QSAR Approach; IJC-A; NISCAIR-CSIR: New Delhi, India, 2003; Volume 42A, pp. 1385–1391. Available online: http://nopr.niscair.res.in/handle/123456789/20670 (accessed on 3 April 2022).
- Feng, X.; Mu, H.; Xiang, Z.; Cai, Y. Theoretical Investigation of Negatively Curved 6.82D Carbon Based on Density Functional Theory. Comput. Mater. Sci. 2020, 171, 109211. [Google Scholar] [CrossRef]
- Felix, L.C.; Woellner, C.F.; Galvao, D.S. Mechanical and Energy-Absorption Properties of Schwarzites. Carbon 2020, 157, 670–680. [Google Scholar] [CrossRef] [Green Version]
- Gibson, J.; Holohan, M.; Riley, H.L. Amorphous Carbon. J. Chem. Soc. 1946, 456–461. [Google Scholar] [CrossRef]
- Sabirov, D.S.; Ori, O.; Tukhbatullina, A.A.; Shepelevich, I.S. Covalently Bonded Fullerene Nano-Aggregates (C60)n: Digitalizing Their Energy-Topology-Symmetry. Symmetry 2021, 13, 1899. [Google Scholar] [CrossRef]
- Sabirov, D.S.; Ori, O. Skeletal Rearrangements of the C240 Fullerene: Efficient Topological Descriptors for Monitoring Stone-Wales Transformations. Mathematics 2020, 8, 968. [Google Scholar] [CrossRef]
- O’Keeffe, M.; Adams, G.B.; Sankey, O.F. Predicted New Low Energy Forms of Carbon. Phys. Rev. Lett. 1992, 68, 2325–2328. [Google Scholar] [CrossRef]
- Barborini, E.; Piseri, P.; Milani, P.; Benedek, G.; Ducati, C.; Robertson, J. Negatively Curved Spongy Carbon. Appl. Phys. Lett. 2002, 81, 3359–3361. [Google Scholar] [CrossRef]
- Baerlocher, C.; Mccusker, L.B.; Olson, B.; Meier, W.M.; Ebrary, I. Atlas of Zeolite Framework Types; Elsevier: Boston, MA, USA; Amsterdam, The Netherlands, 2007. [Google Scholar]
- Hoffmann, R.; Kabanov, A.A.; Golov, A.A.; Proserpio, D.M. Homo Citans and Carbon Allotropes: For an Ethics of Citation. Angew. Chem. Int. Ed. 2016, 55, 10962–10976. [Google Scholar] [CrossRef] [PubMed]
- West, D.B. Introduction to Graph Theory; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2018; (revised April 2018). [Google Scholar]
- Gutman, I.; Milovanovic, I.; Milovanovic, E. Relations between Ordinary and Multiplicative Degree-Based Topological Indices. Filomat 2018, 32, 3031–3042. [Google Scholar] [CrossRef] [Green Version]
- Hussain, Z.; Ijaz, N.; Tahir, W.; Butt, M.T.; Talib, S. Calculating Degree Based Multiplicative Topological Indices of Alcohol. SSRN Electron. J. 2018. [Google Scholar] [CrossRef]
- Jahanbani, A.; Shao, Z.; Sheikholeslami, S.M. Calculating Degree Based Multiplicative Topological Indices of Hyaluronic Acid-Paclitaxel Conjugates’ Molecular Structure in Cancer Treatment. J. Biomol. Struct. Dyn. 2020, 39, 5304–5313. [Google Scholar] [CrossRef]
- Kwun, Y.C.; Virk, A.U.R.; Nazeer, W.; Rehman, M.A.; Kang, S.M. On the Multiplicative Degree-Based Topological Indices of Silicon-Carbon Si2C3-I[P,Q] and Si2C3-II[P,Q]. Symmetry 2018, 10, 320. [Google Scholar] [CrossRef] [Green Version]
- Yousaf, S.; Bhatti, A.A.; Aslam, A. Study of Carbon Nanbotubes and Boron Nanotubes Using Degree Based Topological Indices. Polycycl. Aromat. Compd. 2021, 1–14. [Google Scholar] [CrossRef]
- Todeschini, R.; Consonni, V. New Local Vertex Invariants and Molecular Descriptors Based on Functions of the Vertex Degrees. MATCH Commun. Math. Comput. Chem. 2010, 64, 359–372. [Google Scholar]
- Das, K.C.; Gutman, I. On Wiener and Multiplicative Wiener Indices of Graphs. Discret. Appl. Math. 2016, 206, 9–14. [Google Scholar] [CrossRef]
- Sarkar, P.; De, N.; Pal, A. Correction to: On Some Multiplicative Version Topological Indices of Block Shift and Hierarchical Hypercube Networks. OPSEARCH 2021. [Google Scholar] [CrossRef]
- Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; Wiley-VCH: Weinheim, Germany, 2000. [Google Scholar]
- Kulli, V.R. Multiplicative hyper-Zagreb indices and coindices of graphs: Computing these indices of some nanostructures. Int. Res. J. Pure Algebra 2016, 6, 342–347. [Google Scholar]
- Gutman, I.; Furtula, B.; Katanić, V. Randić Index and Information. AKCE Int. J. Graphs Comb. 2018, 15, 307–312. [Google Scholar] [CrossRef]
- Kulli, V.R. General Multiplicative Zagreb Indices of TUC4C8[M,N] and TUC4[M,N] Nanotubes. Int. J. Fuzzy Math. Arch. 2016, 11, 39–43. [Google Scholar] [CrossRef]
- Deutsch, E.; Klavžar, S. M-Polynomial Revisited: Bethe Cacti and an Extension of Gutman’s Approach. J. Appl. Math. Comput. 2018, 60, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Julietraja, K.; Venugopal, P.; Prabhu, S.; Liu, J.-B. M-Polynomial and Degree-Based Molecular Descriptors of Certain Classes of Benzenoid Systems. Polycycl. Aromat. Compd. 2021, 1–30. [Google Scholar] [CrossRef]
- Julietraja, K.; Venugopal, P. Computation of Degree-Based Topological Descriptors Using M-Polynomial for Coronoid Systems. Polycycl. Aromat. Compd. 2020, 1–24. [Google Scholar] [CrossRef]
- Afzal, F.; Hussain, S.; Afzal, D.; Razaq, S. Some New Degree Based Topological Indices via M-Polynomial. J. Inf. Optim. Sci. 2020, 41, 1061–1076. [Google Scholar] [CrossRef]
- Rauf, A.; Ishtiaq, M.; Muhammad, M.H.; Siddiqui, M.K.; Rubbab, Q. Algebraic Polynomial Based Topological Study of Graphite Carbon Nitride (G-) Molecular Structure. Polycycl. Aromat. Compd. 2021, 1–22. [Google Scholar] [CrossRef]
- Guangyu, L.; Hussain, S.; Khalid, A.; Ishtiaq, M.; Siddiqui, M.K.; Cancan, M.; Imran, M. Topological Study of Carbon Nanotube and Polycyclic Aromatic Nanostar Molecular Structures. Polycycl. Aromat. Compd. 2021, 1–21. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Dehmer, M.; Shi, Y. A Note on Distance-Based Graph Entropies. Entropy 2014, 16, 5416–5427. [Google Scholar] [CrossRef]
- Réti, T.; Tóth-Laufer, E. On the Construction and Comparison of Graph Irregularity Indices. Kragujev. J. Sci. 2017, 39, 53–75. [Google Scholar] [CrossRef] [Green Version]
- Réti, T.; Tóth-Laufer, E. Graph Irregularity Indices Used as Molecular Descriptors in QSPR Studies. MATCH Commun. Math. Comput. Chem. 2018, 79, 509–524. [Google Scholar]
- Chu, Y.-M.; Julietraja, K.; Venugopal, P.; Siddiqui, M.K.; Prabhu, S. Degree- and Irregularity-Based Molecular Descriptors for Benzenoid Systems. Eur. Phys. J. Plus 2021, 136, 78. [Google Scholar] [CrossRef]
S. No | |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 |
S. No | Degree Based Entropy | Mathematical Expressions |
---|---|---|
1 | First Zagreb entropy | |
2 | Second Zagreb entropy | |
3 | Second modified Zagreb entropy | |
4 | Reduced second Zagreb entropy | |
5 | Hyper Zagreb entropy | |
6 | Augmented Zagreb entropy | |
7 | Atom bond connectivity entropy | |
8 | Geometric arithmetic entropy | |
9 | First redefined Zagreb entropy | |
10 | Second redefined Zagreb entropy | |
11 | Third redefined Zagreb entropy | |
12 | Symmetric division deg (SDD) entropy | |
13 | Arithmetic- geometric entropy | |
14 | Forgotten entropy | |
15 | Sum-connectivity entropy |
S. No | Mathematical Expressions |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 | |
14 | |
15 |
Total Number of Edges | |
---|---|
[r,s] | |||||||||
---|---|---|---|---|---|---|---|---|---|
[1,1] | 1,437,696 | 35,831,808 | 11,059,200 | 51.0 | 70.110 | 52.2564 | 256.002 | 752.46 | 559,872 |
[2,2] | 75,479,040 | 1,881,169,920 | 580,608,000 | 2677.5 | 3680.775 | 2743.4610 | 13,440.105 | 39,504.15 | 29,393,280 |
[3,3] | 486,420,480 | 12,123,095,040 | 3,741,696,000 | 17,255.0 | 23,720.550 | 17,680.0820 | 86,614.010 | 25,458.23 | 189,423,360 |
[4,4] | 1,705,826,304 | 42,514,440,192 | 13,121,740,800 | 60,511.5 | 83,185.515 | 62,002.2186 | 30,374.64 | 89,279.38 | 664,288,128 |
[5,5] | 4,412,289,024 | 109,967,818,752 | 33,940,684,800 | 156,519 | 21,516.76 | 16,037.51 | 78,567.01 | 230,929.74 | 1,718,247,168 |
[r,s] | |||||||||
---|---|---|---|---|---|---|---|---|---|
[1,1] | 19.475 | 27.838 | 296 | 408 | 1656 | 3624 | 11.219 | 9.5556 | 22.076 |
[2,2] | 87.112 | 127.52 | 1600 | 2536 | 10336 | 27640 | 42.8 | 30.667 | 84.876 |
[3,3] | 202.75 | 299.19 | 3912 | 6392 | 26072 | 72392 | 94.952 | 63.778 | 188.82 |
[4,4] | 366.38 | 542.87 | 7232 | 11976 | 48864 | 137880 | 167.68 | 108.89 | 333.9 |
[5,5] | 578.02 | 858.55 | 11560 | 19288 | 78712 | 224104 | 260.97 | 166 | 520.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gnanaraj, L.R.M.; Ganesan, D. Topological Study of 6.82 D Carbon Allotrope Structure. Symmetry 2022, 14, 1037. https://doi.org/10.3390/sym14051037
Gnanaraj LRM, Ganesan D. Topological Study of 6.82 D Carbon Allotrope Structure. Symmetry. 2022; 14(5):1037. https://doi.org/10.3390/sym14051037
Chicago/Turabian StyleGnanaraj, Leena Rosalind Mary, and Deepa Ganesan. 2022. "Topological Study of 6.82 D Carbon Allotrope Structure" Symmetry 14, no. 5: 1037. https://doi.org/10.3390/sym14051037
APA StyleGnanaraj, L. R. M., & Ganesan, D. (2022). Topological Study of 6.82 D Carbon Allotrope Structure. Symmetry, 14(5), 1037. https://doi.org/10.3390/sym14051037