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Abstract: The application of graph theory in chemical and molecular structure research has far
exceeded people’s expectations, and it has recently grown exponentially. In the molecular graph,
atoms are represented by vertices and bonds by edges. Topological indices help us to predict many
physico-chemical properties of the concerned molecular compound. In this article, we compute
Generalized first and multiplicative Zagreb indices, the multiplicative version of the atomic bond
connectivity index, and the Generalized multiplicative Geometric Arithmetic index for silicon-carbon
Si2C3− I[p, q] and Si2C3− I I[p, q] second.

Keywords: molecular graph; degree-based index; silicon-carbon

1. Introduction

For quite a few years, Chemical Graph theory has been assuming an imperative part in
mathematical chemistry, quantitative structure-activity relationships (QSAR) and structure-property
relationships (QSPR), and closeness/assorted variety investigation of sub-atomic libraries [1].
Essentially, molecular descriptors utilized as a part of these research fields are obtained from the
graph of molecule, which speak to use some method to calculate numbers associated with molecular
graph then using these number to describe molecule [1,2].

In chemical graph theory, a graph of molecule is a simple connected graph, in which atoms and
chemical bonds are represented by vertices and edges respectively. A graph is connected if there is a
connection between any pair of vertices. A network is a connected graph that has no multiple edge
and loop. The number of vertices that are connected to a fixed vertex v is called the degree of v. The
distance between two vertices is the length of the shortest path between them. The concept of valence
in chemistry and the concept of degree in a graph is somehow closely related. For details on bases of
graph theory, we refer to the book [3]. Throughout this paper, G denotes connected graph, V and E
denote the vertex set and the edge set, respectively, and dv denotes the degree of a vertex.

The topological index of the graph of a chemical compound is the number associated with it.
In 1947 Weiner laid the foundation of the topological index when he was approximating the boiling
point of alkanes and introduced the Weiner index [4]. Till now, more than 140 topological indices
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are defined, but none of them is enough to determine all physico-chemical properties of understudy
molecule. However, these indices together can do this to some extent. Later, in 1975, Milan Randić
introduced Randić index [5]. In 1998, Bollobas and Erdos [6] and Amic et al. [7] defined the generalized
Randić index, which got attention from both chemists and mathematicians [8]. The Randić index is one
of the most popular, studied, and applied topological indices. Many reviews, papers, and books [9–13]
are written on this simple graph invariant.

In 1972, Gutman introduced the first and the second Zagreb indices in [14].

M1(G) = ∑
u∈V(G)

(du)
2 = ∑

uv∈E(G)

(du + dv),

M2(G) = ∑
uv∈E(G)

du × dv.

These indices have applied to study molecular chirality, complexity, hetero-systems, and
ZE-isomerism [15].

Some indices are The first and second multiplicative Zagreb indices [16] are related to Wiener’s
work and defined as:

I I1(G) = ∏
u∈V(G)

(du)
2,

I I2(G) = ∏
uv∈E(G)

du × dv.

and the Narumi-Katayama index [17]:

NK(G) = ∏
u∈V(G)

du.

In computational chemistry, these types of indices are the focus of considerable research, like the
Wiener index [18–20]. For example, in 2011. Gutman [18] studied and characterized the multiplicative
first and second Zagreb indices for trees and determined the unique trees that give maximum and
minimum values for M1(G) and M2(G), respectively. In [20], authors extended Gutman’s result and
defined the following index for k-trees:

Ws
1(G) = ∏

u∈V(G)

(du)
s.

Notice that for s = 1, 2 the above defined index is the Narumi-Katayama and Zagreb index,
respectively. Based on the successful consideration of multiplicative Zagreb indices, M. Eliasi et al. [21]
defined a new version of the multiplicative first Zagreb index as:

I I∗1 (G) = ∏
uv∈E(G)

(du + dv).

Furthering the study of topological indices, the first and second hyper-Zagreb indices of a
graph [22] are defined as:

HII1(G) = ∏
uv∈E(G)

(du + dv)
2,

HII2(G) = ∏
uv∈E(G)

(du × dv)
2.

In [23], Kulli et al. defined the first and second generalized multiplicative Zagreb indices:

MZa
1(G) = ∏

uv∈E(G)

(du + dv)
a,
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MZa
2(G) = ∏

uv∈E(G)

(du × dv)
a.

Multiplicative sum connectivity and multiplicative product connectivity indices [24] are
defined as:

SCII(G) = ∏
uv∈E(G)

1√
du + dv

,

PCII(G) = ∏
uv∈E(G)

1√
du × dv

.

Note that for α = 1, first and second generalized multiplicative Zagreb indices are first and second
multiplicative Zagreb indices, respectively, and for α = 2, first and second generalized multiplicative
Zagreb indices are first and second hyper multiplicative Zagreb indices, respectively. For α = − 1

2
first and second generalized multiplicative Zagreb indices are multiplicative sum connectivity and
multiplicative product connectivity indices.

Multiplicative atomic bond connectivity index, multiplicative Geometric arithmetic index, and
generalized multiplicative Geometric arithmetic index are defined as

ABCII(G) = ∏
uv∈E( G)

√
du + dv − 2

du × dv
,

GAII(G) = ∏
uv∈E(G)

2
√

du × dv

du + dv
,

GAa I I(G) = ∏
uv∈E(G)

(
2
√

du × dv

du + dv

)a

.

In this paper, we compute Generalized first and second multiplicative Zagreb indices,
multiplicative version of Atomic bond connectivity index and Generalized multiplicative Geometric
Arithmetic index for silicon-carbon Si2C3− I[p, q] and Si2C3− I I[p, q]. Now we discuss the graph of
Si2C3− I and Si2C3− I I.

In Figure 1, one unit of Si2C3− I is shown. Molecular graph of Si2C3− I is shown in Figure 2, in
which p denotes the number of cells attached in a single row and q denotes the number of total rows
where each row contains p cells. In Figures 3 and 4, we demonstrate how cells are connected in one
row (chain) and how one row is connected to another row.

In Figures 1–4, carbon atoms are shown as brown, and silicon atoms Si are shown as blue.
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Figure 4. Sheet of Si2C3− I[p, q] for p = 4 and q = 2.

In Figure 5, one unit of Si2C3− I I is given. By connecting p cells in a row and then connecting q
rows where each row contains p cells, we get molecular graph of Si2C3− I I. The molecular graph of
Si2C3− I I is shown in Figure 6 for p = 3 and q = 4. Figures 7 and 8 demonstrate how cells are connected
in a row (chain) and how a row is connected to another row. We will use Si2C3− I I[p, q] to represent
this molecular graph.
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2. Computational Results

In this section we give our main results.

Theorem 1. Let Si2C3− I[p, q] be the Silicon Carbide. Then

MZa
1(Si2C3− I) = (2)α(15pq−7p−9q+9) × (3)α(15pq−9p−13q+8) × (5)α(6p+8q−9).

MZa
2(Si2C3− I) = (2)4α(2p+3q−2) × (3)6α(5pq+2p−3q+1).

GAα I I(Si2C3− I) = (2)α(9p+12q−13) × (3)α(3p+4q−5) × (5)α(9−6p−8q).

Proof. Let G be the graph of Si2C3− I[p, q]. From the graph of Si2C3− I[p, q] (Figures 1–4), we can see
that the total number of vertices are 10pq, and total number of edges are 15pq− 2p− 3q.

The edge set of Si2C3− I[p, q] with p, q ≥ 1 has following five partitions:

E{1,2}(Si2C3− I[p, q]) = {e = uv ∈ E(Si2C3− I[p, q])|du = 1, dv = 2},
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E{1,3}(Si2C3− I[p, q]) = {e = uv ∈ E(Si2C3− I[p, q])|du = 1, dv = 3},

E{2,2}(Si2C3− I[p, q]) = {e = uv ∈ E(Si2C3− I[p, q])|du = 2, dv = 2},

E{2,3}(Si2C3− I[p, q]) = {e = uv ∈ E(Si2C3− I[p, q])|du = 2, dv = 3}.

Additionally, it has

E{3,3}(Si2C3− I[p, q]) = {e = uv ∈ E(Si2C3− I[p, q])|du = 3, dv = 3}.

Now, ∣∣∣E{1,2}(Si2C3− I[p, q])
∣∣∣ = 1,∣∣∣E{1,3}(Si2C3− I[p, q])
∣∣∣ = 1,∣∣∣E{2,2}(Si2C3− I[p, q])

∣∣∣ = p + 2q,∣∣∣E{2,3}(Si2C3− I[p, q])
∣∣∣ = 6p− 1 + 8(q− 1),

and ∣∣∣E{3,3}(Si2C3− I[p, q])
∣∣∣ = 15pq− 9p− 13q + 7.

MZa
1(Si2C3− I) = ∏

uv∈E(Si2C3− I)
(du + dv)

α

= (1 + 2)α × (1 + 3)α × (2 + 2)α(p+2q) × (2 + 3)α(6p+8q−9) × (3 + 3)α(15pq−9p−13q+7)

= (2)α(15pq−7p−9q+9) × (3)α(15pq−9p−13q+8) × (5)α(6p+8q−9).

MZa
2(Si2C3− I) = ∏

uv∈E(Si2C3− I)
(du × dv)

α

= (1× 2)α × (1× 3)α × (2× 2)α(p+2q) × (2× 3)α(6p+8q−9) × (3× 3)α(15pq−9p−13q+7)

= (2)4α(2p+3q−2) × (3)6α(5pq+2p−3q+1).

GAα I I(Si2C3 − I) = ∏
uv∈E(Si2C3−I)

(
2
√

du×dv
du+dv

)α

=
(

2
√

1×2
1+2

)α
×
(

2
√

1×3
1+3

)α
×
(

2
√

2×2
2+2

)α(p+2q)
×
(

2
√

2×3
2+3

)α(6p+8q−9)
×
(

2
√

3×3
3+3

)α(15pq−9p−13q+7)

= (2)α(9p+12q−13) × (3)α(3p+4q−5) × (5)α(9−6p−8q).

�

Theorem 2. Let Si2C3− I[p, q] be the Silicon Carbide. Then,

MZ1(Si2C3− I) = I I∗1 (Si2C3− I) = (2)15pq−7p−9q+9 × (3)15pq−9p−13q+8 × (5)6p+8q−9.

MZ2(Si2C3− I) = I I2(Si2C3− I) = (2)4(2p+3q−2) × (3)6(5pq+2p−3q+1).

GAII(Si2C3− I) = (2)9p+12q−13 × (3)3p+4q−5 × (5)9−6p−8q.

Proof. Taking α = 1, in Theorem 1, we get our desired results. �
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Theorem 3. Let Si2C3− I[p, q] be the Silicon Carbide. Then,

HII1(Si2C3− I) = (3)30pq−18p−26q+16 × (2)30pq−14p−18q+18 × (5)12p+16q−18.

HII2(Si2C3− I) = (2)8(2p+3q−2) × (3)12(5pq−2p−3q+6).

Proof. Taking α = 2, in Theorem 1, we get our desired results. �

Theorem 4. Let Si2C3− I[p, q] be the Silicon Carbide. Then,

SCII(Si2C3− I) =
(

1
2

)1+p+2q
×
(

1√
3

)
×
(

1√
5

)6p+8q−9
×
(

1√
6

)15pq−9p−13q+7
.

PCII(Si2C3− I) =
(

1
2

)2(2p+3q−2)
×
(

1
3

)3(5pq−2p−3q+1)
.

Proof. Taking α = − 1
2 , in Theorem 1, we get our desired results. �

Theorem 5. Let Si2C3− I[p, q] be the Silicon Carbide. Then,

ABCII(Si2C3− I) =

[(
1
2

) 1
2
]16p+23q−15pq−16

×
[(

1
3

) 1
2
]15pq−9p−13q+8

.

Proof.

ABCII(Si2C3− I) = ∏
uv∈E(Si2C3− I)

√
du+dv−2

du×dv

=
(√

1+2−2
1×2

)
×
(√

1+3−2
1×3

)
×
(√

2+2−2
2×2

)p+2q
×
(√

2+3−2
2×3

)6p+8q−9
×
(√

3+3−2
2×3

)15pq−9p−13q+7

=

[(
1
2

) 1
2
]16p+23q−15pq−16

×
[(

1
3

) 1
2
]15pq−9p−13q+8

.

�

Theorem 6. Let Si2C3− I I[p, q] be the Silicon Carbide. Then,

MZa
1(Si2C3− I I) = (2)α(15pq−9p−9q+13) × (3)α(15pq−13p−13q+13) × (5)α(8p+8q−14).

MZa
2(Si2C3− I I) = (2)12α(p+q−1) × (3)3α(10pq+6p−6q+3).

GAα I I(Si2C3− I I) = (2)α(12p+12q−19) × (3)α(4p+4q− 17
2 ) × (5)α(14−8p−8q).

Proof. Let G be the graph of Si2C3− I I[p, q]. From the graph of Si2C3− I I[p, q] (Figures 5–8), we can see
that the total number of vertices are 10pq and total number of edges are 15pq− 3p− 3q.

The edge set of Si2C3− I I[p, q] with p, q ≥ 1 has following five partitions:
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E{1,2}(Si2C3− I I[p, q]) = {e = uv ∈ E(Si2C3− I I[p, q])|du = 1, dv = 2},

E{1,3}(Si2C3− I I[p, q]) = {e = uv ∈ E(Si2C3− I I[p, q])|du = 1, dv = 3},

E{2,2}(Si2C3− I I[p, q]) = {e = uv ∈ E(Si2C3− I I[p, q])|du = 2, dv = 2},

E{2,2}(Si2C3− I I[p, q]) = {e = uv ∈ E(Si2C3− I I[p, q])|du = 2, dv = 2}.

Additionally, it has

E{3,3}(Si2C3− I I[p, q]) = {e = uv ∈ E(Si2C3− I I[p, q])|du = 3, dv = 3}.

Now, ∣∣∣E{1,2}(Si2C3− I I[p, q])
∣∣∣ = 2,∣∣∣E{1,3}(Si2C3− I I[p, q])
∣∣∣ = 1,∣∣∣E{2,2}(Si2C3− I I[p, q])

∣∣∣ = 2p + 2q,∣∣∣E{2,3}(Si2C3− I I[p, q])
∣∣∣ = 8p + 8q− 14,

and ∣∣∣E{3,3}(Si2C3− I I[p, q])
∣∣∣ = 15pq− 13p− 13q + 11.

MZa
1(Si2C3− I I[p, q]) = ∏

uv∈E(Si2C3− I I[p,q])
(du + dv)

α

= (1 + 2)2α × (1 + 3)α × (2 + 2)α(2p+2q) × (2 + 3)α(8p+8q−14) × (3 + 3)α(15pq−13p−13q+11)

= (2)α(15pq−9p−9q+13) × (3)α(15pq−13p−13q+13) × (5)α(8p+8q−14).

MZa
2(Si2C3− I I[p, q]) = ∏

uv∈E(Si2C3− I I[p,q])
(du × dv)

α

= (1× 2)2α × (1× 3)α × (2× 2)α(2p+2q) × (2× 3)α(8p+8q−14) × (3× 3)α(15pq−13p−13q+11)

= (2)12α(p+q−1) × (3)3α(10pq+6p−6q+3).

GAα I I(Si2C3− I I[p, q]) = ∏
uv∈E(Si2C3− I I[p,q])

(
2
√

du×dv
du+dv

)α

=
(

2
√

1×2
1+2

)2α
×
(

2
√

1×3
1+3

)α
×
(

2
√

2×2
2+2

)α(2p+2q)
×
(

2
√

2×3
2+3

)α(8p+8q−14)
×
(

2
√

3×3
3+3

)α(15pq−13p−13q+11)

= (2)α(12p+12q−19) × (3)α(4p+4q− 17
2 ) × (5)α(14−8p−8q).

�

Theorem 7. Let Si2C3− I I[p, q] be the Silicon Carbide. Then,

MZ1(Si2C3− I I) = I I∗1 (Si2C3− I I) = (2)15pq−9p−9q+13 × (3)15pq−13p−13q+13 × (5)8p+8q−14.

MZ2(Si2C3− I I) = I I2(Si2C3− I I) = (2)12(p+q−1) × (3)3(10pq+6p−6q+3).

GAα I I(Si2C3− I I) = (2)α(12p+12q−19) × (3)α(4p+4q− 17
2 ) × (5)α(14−8p−8q).

Proof. Taking α = 1, in Theorem 6, we get our desired results. �
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Theorem 8. Let Si2C3− I I[p, q] be the Silicon Carbide. Then,

HII1(Si2C3− I I) = (2)30pq−18p−18q+26 × (3)30pq−26p−26q+26 × (5)16p+16q−28.

HII2(Si2C3− I I) = (2)24(p+q−1) × (3)6(10pq−6p−6q+3).

Proof. Taking α = 2, in Theorem 6, we get our desired results. �

Theorem 9. Let Si2C3− I I[p, q] be the Silicon Carbide. Then,

SCII(Si2C3− I I) =
(

1
2

)1+2p+2q
×
(

1
3

)
×
(

1
5

)4p+4q−7
×
(

1√
6

)15pq−13p−13q+11
.

PCII(Si2C3− I I) =
(

1
2

)6(p+q−1)
×
(

1
3

)3(5pq−3p−3q+ 1
2 )

.

Proof. Taking α = − 1
2 , in Theorem 6, we get our desired results. �

Theorem 10. Let Si2C3− I I[p, q] be the Silicon Carbide. Then,

ABCII(Si2C3− I I) =

[(
1
2

)] 23
2 p+ 23

2 q− 15
2 pq−12

×
[(

1
3

) 1
2
]15pq−13p−13q+11

.

Proof.

ABCII(Si2C3− I I[p, q]) = ∏
uv∈E(Si2C3− I I[p,q])

√
du+dv−2

du×dv

=
(√

1+2−2
1×2

)
×
(√

1+3−2
1·3

)
×
(√

2+2−2
2×2

)p+2q
×
(√

2+3−2
2×3

)6p+8q−9
×
(√

3+3−2
2×3

)15pq−9p−13q+7

=
[(

1
2

)] 23
2 p+ 23

2 q− 15
2 pq−12

×
[(

1
3

) 1
2
]15pq−13p−13q+11

.

�

3. Remarks

Multiplicative, degree-based topological indices for silicon-carbon have been investigated here.
Our results can help us to understand the physical features, chemical reactivity, and biological activities
of silicon-carbon. For example, the atom-bond connectivity (ABC) index provides a very good
correlation for computing the strain energy of molecules [25]. ABC is used to describe the heats of
formation of alkanes, resulting in a good quantitative structure-property relationship (QSPR) model
(r = 0.9970) [26]. The GA index has as much predictive power as that of the Randic index, so the GA
index is more useful than the Randic index [25]. The first and second Zagreb indices were found to
occur for the computation of the total π-electron energy of molecules and have a strong relationship
with Weiner index [27]. The computation of distance-based and counting-related topological indices
for these symmetrical graphs is an open challenge and is yet to be investigated. Figures 1–8 are taken
from [28].
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