Applications of Laguerre Polynomials on a New Family of Bi-Prestarlike Functions
Abstract
:1. Introduction
2. Main Results
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duren, P.L. Univalent Functions. In Grundlehren der Mathematischen Wissenschaften; Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.M.; Lee, S.K.; Ravichandran, V.; Supramaniam, S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 2012, 25, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Bulut, S.; Magesh, N.; Abirami, C. A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomials. J. Fract. Calc. Appl. 2017, 8, 32–39. [Google Scholar]
- Srivastava, H.M.; Wanas, A.K.; Murugusundaramoorthy, G. Certain family of bi-univalent functions associated with Pascal distribution series based on Horadam polynomials. Surv. Math. Its Appl. 2021, 16, 193–205. [Google Scholar]
- Akgül, A. (P,Q)-Lucas polynomial coefficient inequalities of the bi-univalent function class. Turk. J. Math. 2019, 43, 2170–2176. [Google Scholar] [CrossRef]
- Altınkaya, Ş. Inclusion properties of Lucas polynomials for bi-univalent functions introduced through the q-analogue of the Noor integral operator. Turk. J. Math. 2019, 43, 620–629. [Google Scholar] [CrossRef]
- Al-Amoush, A.G. Coefficient estimates for a new subclasses of λ-pseudo biunivalent functions with respect to symmetrical points associated with the Horadam Polynomials. Turk. J. Math. 2019, 43, 2865–2875. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Murugusundaramoorthy, G.; Al-Hawary, T. Bi-Bazilevič functions of order ϑ+iδ associated with (p,q)-Lucas polynomials. AIMS Math. 2021, 6, 4296–4305. [Google Scholar] [CrossRef]
- Caglar, M. Chebyshev Polynomial Coefficient Bounds for a Subclass of Bi-univalent Functions. Comptes Rendus Acad. Bulg. Sci. 2019, 72, 1608–1615. [Google Scholar]
- Güney, H.Ö.; Murugusundaramoorthy, G.; Sokół, J. Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers. Acta Univ. Sapient. Math. 2018, 10, 70–84. [Google Scholar] [CrossRef] [Green Version]
- Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, M.; Ahmad, Q.Z.; Khan, N. Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2021, 6, 1024–1039. [Google Scholar] [CrossRef]
- Páll-Szabó, A.O.; Wanas, A.K. Coefficient estimates for some new classes of bi-Bazilevic functions of Ma-Minda type involving the Salagean integro-differential operator. Quaest. Math. 2021, 44, 495–502. [Google Scholar]
- Seker, B. On a new subclass of bi-univalent functions defined by using Salagean operator. Turk. J. Math. 2018, 42, 2891–2896. [Google Scholar] [CrossRef]
- Seker, B.; Taymur, I. On subclasses of m-fold symmetric bi-univalent functions. TWMS J. Appl. Eng. Math. 2021, 11, 598–604. [Google Scholar]
- Shaba, T.G. On some subclasses of bi-pseudo-starlike functions defined by Salagean differential operator. Asia Pac. J. Math. 2021, 8, 1–11. [Google Scholar]
- Srivastava, H.M.; Altınkaya, Ş.; Yalçin, S. Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 1873–1879. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Motamednezhad, A.; Adegani, E.A. Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator. Mathematics 2020, 8, 172. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Wanas, A.K. Applications of the Horadam polynomials involving λ-pseudo-starlike bi-univalent functions associated with a certain convolution operator. Filomat 2021, 35, 4645–4655. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Wanas, A.K.; Srivastava, R. Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials. Symmetry 2021, 13, 1230. [Google Scholar] [CrossRef]
- Swamy, S.R.; Lupaş, A.A.; Wanas, A.K.; Nirmala, J. Applications of Borel distribution for a new family of bi-univalent functions defined by Horadam polynomials. WSEAS Trans. Math. 2021, 20, 630–636. [Google Scholar] [CrossRef]
- Wanas, A.K.; Cotîrlǎ, L.-I. Applications of (M-N)-Lucas polynomials on a certain family of bi-univalent functions. Mathematics 2022, 10, 595. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine bemerkung uber ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 2, 85–89. [Google Scholar] [CrossRef]
- Abirami, C.; Magesh, N.; Yamini, J. Initial bounds for certain classes of bi-univalent functions defined by Horadam Polynomials. Abstr. Appl. Anal. 2020, 2020, 7391058. [Google Scholar] [CrossRef] [Green Version]
- Altınkaya, Ş.; Yalçin, S. Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions. arXiv 2017, arXiv:1605.08224v2. [Google Scholar]
- Bulut, S. Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions. Filomat 2016, 30, 1567–1575. [Google Scholar] [CrossRef]
- Magesh, N.; Yamini, J. Fekete-Szegö problem and second Hankel determinant for a class of bi-univalent functions. Tbil. Math. J. 2018, 11, 141–157. [Google Scholar] [CrossRef] [Green Version]
- Oros, G.I.; Cotîrlǎ, L.-I. Coefficient estimates and the Fekete–Szegö problem for new class of m-fold Symmetric bi-univalent functions. Mathematics 2022, 10, 129. [Google Scholar] [CrossRef]
- Páll-Szabó, A.O.; Oros, G.I. Coefficient Related Studies for New Classes of Bi-Univalent Functions. Mathematics 2020, 8, 1110. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokol, J. Fekete-Szegö problem for some starlike functions related to shell-like curves. Math. Slovaca 2016, 66, 135–140. [Google Scholar] [CrossRef]
- Ruscheweyh, S. Linear operators between classes of prestarlike functions. Comment. Math. Helv. 1977, 52, 497–509. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications. In Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Incorporated: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
- Lebedev, N.N. Special Functions and Their Applications; Translated from the revised Russian edition (Moscow, 1963); Silverman, R.A., Ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1965. [Google Scholar]
- Li, X.-F.; Wang, A.-P. Two new subclasses of bi-univalent functions. Int. Math. Forum 2012, 7, 1495–1504. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Stud. Univ. Babes–Bolyai Math. 1988, 31, 53–60. [Google Scholar]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kareem Wanas, A.; Alb Lupaş, A. Applications of Laguerre Polynomials on a New Family of Bi-Prestarlike Functions. Symmetry 2022, 14, 645. https://doi.org/10.3390/sym14040645
Kareem Wanas A, Alb Lupaş A. Applications of Laguerre Polynomials on a New Family of Bi-Prestarlike Functions. Symmetry. 2022; 14(4):645. https://doi.org/10.3390/sym14040645
Chicago/Turabian StyleKareem Wanas, Abbas, and Alina Alb Lupaş. 2022. "Applications of Laguerre Polynomials on a New Family of Bi-Prestarlike Functions" Symmetry 14, no. 4: 645. https://doi.org/10.3390/sym14040645
APA StyleKareem Wanas, A., & Alb Lupaş, A. (2022). Applications of Laguerre Polynomials on a New Family of Bi-Prestarlike Functions. Symmetry, 14(4), 645. https://doi.org/10.3390/sym14040645