Aerodynamic Effects Produced by a High-Speed Train Traveling through a Tunnel Considering Different Car Numbers
Abstract
:1. Introduction
2. Numerical Simulation Method
2.1. Numerical Models
2.2. Calculated Parameters
2.3. Layout of Monitoring Points
3. Validation
4. Results
4.1. Time History of Aerodynamic Pressures
4.2. Initial Compression Wave
4.3. Peak Pressure
4.3.1. Before Train Tail Leaves the Tunnel
4.3.2. After the Train Tail Leaves the Tunnel
4.4. Micropressure Waves
4.5. Wave Diagram
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, C.J. A review of train aerodynamics Part 1—Fundamentals. Aeronaut. J. 2014, 118, 201–228. [Google Scholar] [CrossRef]
- Saito, S.; Fukuda, T. Design of a tunnel entrance hood for high-speed trains. J. Wind Eng. Ind. Aerodyn. 2020, 206, 104375. [Google Scholar] [CrossRef]
- Li, W.-H.; Liu, T.-H.; Huo, X.-S.; Chen, Z.-W.; Guo, Z.-J.; Li, L. Influence of the enlarged portal length on pressure waves in railway tunnels with cross-section expansion. J. Wind Eng. Ind. Aerodyn. 2019, 190, 10–22. [Google Scholar] [CrossRef]
- Du, J.-M.; Fang, Q.; Wang, G.; Zhang, D.-L.; Chen, T.-L. Fatigue damage and residual life of secondary lining of high-speed railway tunnel under aerodynamic pressure wave. Tunn. Undergr. Space Technol. 2021, 111, 103851. [Google Scholar] [CrossRef]
- Li, X.-H.; Deng, J.; Chen, D.-W.; Xie, F.-F.; Zheng, Y. Unsteady simulation for a high-speed train entering a tunnel. J. Zhejiang Univ. A 2011, 12, 957–963. [Google Scholar] [CrossRef]
- Liu, F.; Yao, S.; Zhang, J.; Wang, Y.-Q. Field measurements of aerodynamic pressures in high-speed railway tunnels. Tunn. Undergr. Space Technol. 2018, 72, 97–106. [Google Scholar] [CrossRef]
- Miyachi, T. Acoustic model of micro-pressure wave emission from a high-speed train tunnel. J. Sound Vib. 2017, 391, 127–152. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, M.-Z.; Niu, J.-Q.; Liang, X.-F.; Zhang, J. Moving model tests on transient pressure and micro-pressure wave distribution induced by train passing through tunnel. J. Wind Eng. Ind. Aerodyn. 2019, 191, 1–21. [Google Scholar] [CrossRef]
- Howe, M. Mach number dependence of the compression wave generated by a high-speed train entering a tunnel. J. Sound Vib. 1998, 212, 23–36. [Google Scholar] [CrossRef]
- Murray, P.; Howe, M. Influence of hood geometry on the compression wave generated by a high-speed train. J. Sound Vib. 2010, 329, 2915–2927. [Google Scholar] [CrossRef]
- Miyachi, T. Non-linear acoustic analysis of the pressure rise of the compression wave generated by a train entering a tunnel. J. Sound Vib. 2019, 458, 365–375. [Google Scholar] [CrossRef]
- Ko, Y.-Y.; Chen, C.-H.; Hoe, I.-T.; Wang, S.-T. Field measurements of aerodynamic pressures in tunnels induced by high speed trains. J. Wind Eng. Ind. Aerodyn. 2012, 100, 19–29. [Google Scholar] [CrossRef]
- Liu, T.-X.; Jiang, Z.-H.; Chen, X.-D.; Zhang, J.; Liang, X.-F. Wave effects in a realistic tunnel induced by the passage of high-speed trains. Tunn. Undergr. Space Technol. 2019, 86, 224–235. [Google Scholar] [CrossRef]
- Yang, Q.-S.; Song, J.-H.; Yang, G.-W. A moving model rig with a scale ratio of 1/8 for high speed train aerodynamics. J. Wind Eng. Ind. Aerodyn. 2016, 152, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Song, J.-H.; Guo, D.-L.; Yang, G.-W.; Yang, Q.-S. Experimental investigation on the aerodynamics of tunnel-passing for high-speed train with a moving model rig. J. Exp. Fluid Mech. 2017, 31, 39–45. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, L.; Thurow, K.; Stoll, N.; Liu, H. Influence of the geometry of equal-transect oblique tunnel portal on compression wave and micro-pressure wave generated by high-speed trains entering tunnels. J. Wind Eng. Ind. Aerodyn. 2018, 178, 1–17. [Google Scholar] [CrossRef]
- Chu, C.-R.; Chien, S.-Y.; Wang, C.-Y.; Wu, T.-R. Numerical simulation of two trains intersecting in a tunnel. Tunn. Undergr. Space Technol. 2014, 42, 161–174. [Google Scholar] [CrossRef]
- Wang, S.; Bell, J.; Burton, D.; Herbst, A.H.; Sheridan, J.; Thompson, M.C. The performance of different turbulence models (URANS, SAS and DES) for predicting high-speed train slipstream. J. Wind Eng. Ind. Aerodyn. 2017, 165, 46–57. [Google Scholar] [CrossRef]
- Lu, Y.-B.; Wang, T.-T.; Yang, M.-Z.; Qian, B. The influence of reduced cross-section on pressure transients from high-speed trains intersecting in a tunnel. J. Wind Eng. Ind. Aerodyn. 2020, 201, 104161. [Google Scholar] [CrossRef]
- Niu, J.-Q.; Zhou, D.; Liang, X.-F.; Liu, S.; Liu, T.-H. Numerical simulation of the Reynolds number effect on the aerodynamic pressure in tunnels. J. Wind Eng. Ind. Aerodyn. 2018, 173, 187–198. [Google Scholar] [CrossRef]
- Niu, J.-Q.; Zhou, D.; Liu, F.; Yuan, Y. Effect of train length on fluctuating aerodynamic pressure wave in tunnels and method for determining the amplitude of pressure wave on trains. Tunn. Undergr. Space Technol. 2018, 80, 277–289. [Google Scholar] [CrossRef]
- Deng, E.; Yang, W.-C.; He, X.-H.; Ye, Y.-C.; Zhu, Z.-H.; Wang, A. Transient aerodynamic performance of high-speed trains when passing through an infrastructure consisting of tunnel–bridge–tunnel under crosswind. Tunn. Undergr. Space Technol. 2020, 102, 103440. [Google Scholar] [CrossRef]
- Dong, T.-H.; Minelli, G.; Wang, J.-B.; Liang, X.-F.; Krajnović, S. The effect of reducing the underbody clearance on the aerodynamics of a high-speed train. J. Wind Eng. Ind. Aerodyn. 2020, 204, 104249. [Google Scholar] [CrossRef]
- Chen, X.-D.; Liu, T.-H.; Zhou, X.-S.; Li, W.-H.; Xie, T.-Z.; Chen, Z.-W. Analysis of the aerodynamic effects of different nose lengths on two trains intersecting in a tunnel at 350 km/h. Tunn. Undergr. Space Technol. 2017, 66, 77–90. [Google Scholar] [CrossRef]
- Du, J.-M.; Fang, Q.; Wang, J.; Wang, G. Influences of High-Speed Train Speed on Tunnel Aerodynamic Pressures. Appl. Sci. 2022, 12, 303. [Google Scholar] [CrossRef]
- Fang, Q.; Du, J.-M.; Li, J.-Y.; Zhang, D.-L.; Cao, L.-Q. Settlement characteristics of large-diameter shield excavation below existing subway in close vicinity. J. Central South Univ. 2021, 28, 882–897. [Google Scholar] [CrossRef]
- Jiang, Z.-H.; Liu, T.-H.; Chen, X.-D.; Li, W.-H.; Guo, Z.-J.; Niu, J.Q. Numerical prediction of the slipstream caused by the trains with different marshalling forms entering a tunnel. J. Wind Eng. Ind. Aerodyn. 2019, 189, 276–288. [Google Scholar] [CrossRef]
- Fang, Q.; Wang, G.; Yu, F.-C.; Du, J.-M. Analytical algorithm for longitudinal deformation profile of a deep tunnel. J. Rock Mech. Geotech. Eng. 2021, 13, 845–854. [Google Scholar] [CrossRef]
- Guo, D.-L.; Shang, K.-M.; Zhang, Y.; Yang, G.-W.; Sun, Z.-X. Influences of affiliated components and train length on the train wind. Acta Mech. Sin. 2016, 32, 191–205. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.-Z.; Fang, Q.; Peng, C. A mortar segment-to-segment contact method for stabilized total-Lagrangian smoothed particle hydrodynamics. Appl. Math. Model. 2022, in press. [Google Scholar] [CrossRef]
- Rabani, M.; Faghih, A.K. Numerical analysis of airflow around a passenger train entering the tunnel. Tunn. Undergr. Space Technol. 2015, 45, 203–213. [Google Scholar] [CrossRef]
Model | Specification | Value |
---|---|---|
Train model | Head (tail) car length | 26.5 m |
Middle car length | 25.0 m | |
Streamlined length of train nose | 12.0 m | |
Constant cross-sectional area | 11.2 m2 | |
Train speed | 350 km/h | |
Width | 3.4 m | |
Height | 3.7 m | |
From tunnel entrance | 50.0 m | |
Above tunnel floor | 0.2 m | |
Tunnel model | Length | 1000 m |
Internal cross-sectional area | 100 m2 | |
Center-to-center distance | 5.0 m | |
Train versus tunnel | Blockage ratio | 0.11 |
Solver Parameters | Parameter Setting | |
---|---|---|
Solver type | Pressure-Based | |
Turbulent model | RNG k-e model | |
Scheme of pressure-velocity coupling | Semi-implicit Method for Pressure Linked Equations | |
Spatial discretization | Gradient | Least Squares Cell Based |
Pressure | Second Order | |
Momentum | Second Order Upwind | |
Residual value | Continuity equation | 10−5 |
Momentum equation | 10−5 | |
Energy equation | 10−7 | |
Time Steps Size | 0.04 s | |
Max iterations of each time step | 50 |
Train Number | Initial Positive Peak (kPa) | Time to Reach Initial Positive Peak (s) | ||||
---|---|---|---|---|---|---|
Monitoring Point | 3 | 6 | 8 | 3 | 6 | 8 |
three-car | 1.618 | 1.625 | 1.623 | 1.528 | 2.392 | 2.968 |
four-car | 1.668 | 1.676 | 1.672 | 1.812 | 2.672 | 3.160 |
five-car | 1.712 | 1.721 | 1.717 | 2.076 | 2.876 | 3.452 |
six-car | 1.752 | 1.761 | 1.757 | 2.292 | 3.152 | 3.720 |
seven-car | 1.786 | 1.807 | 1.787 | 2.444 | 3.436 | 3.828 |
eight-car | 1.794 | 1.841 | 1.794 | 2.456 | 3.724 | 3.834 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.-M.; Fang, Q.; Wang, G.; Wang, J.; Li, J.-Y. Aerodynamic Effects Produced by a High-Speed Train Traveling through a Tunnel Considering Different Car Numbers. Symmetry 2022, 14, 479. https://doi.org/10.3390/sym14030479
Du J-M, Fang Q, Wang G, Wang J, Li J-Y. Aerodynamic Effects Produced by a High-Speed Train Traveling through a Tunnel Considering Different Car Numbers. Symmetry. 2022; 14(3):479. https://doi.org/10.3390/sym14030479
Chicago/Turabian StyleDu, Jian-Ming, Qian Fang, Gan Wang, Jun Wang, and Jian-Ye Li. 2022. "Aerodynamic Effects Produced by a High-Speed Train Traveling through a Tunnel Considering Different Car Numbers" Symmetry 14, no. 3: 479. https://doi.org/10.3390/sym14030479
APA StyleDu, J.-M., Fang, Q., Wang, G., Wang, J., & Li, J.-Y. (2022). Aerodynamic Effects Produced by a High-Speed Train Traveling through a Tunnel Considering Different Car Numbers. Symmetry, 14(3), 479. https://doi.org/10.3390/sym14030479