A Study on the Modified Form of Riemann-Type Fractional Inequalities via Convex Functions and Related Applications
Abstract
1. Introduction and Preliminaries
2. Main Results
3. Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonyah, E.; Chukwu, C.W.; Juga, M.L.; Fatmawati. Modeling fractional-order dynamics of Syphilis via Mittag-Leffler law. AIMS Math. 2021, 6, 8367–8389. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Rezapour, S. A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 2020, 64. [Google Scholar] [CrossRef]
- Khan, A.; Shah, K.; Abdeljawad, T.; Alqudah, M.A. Existence of results and computational analysis of a fractional order two strain epidemic model. Res. Phys. 2022, 39, 105649. [Google Scholar] [CrossRef]
- Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad, S. A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 2021, 144, 110668. [Google Scholar] [CrossRef]
- Asamoah, J.K.K.; Okyere, E.; Yankson, E.; Opoku, A.A.; Adom-Konadu, A.; Acheampong, E.; Arthur, Y.D. Non-fractional and fractional mathematical analysis and simulations for Q fever. Chaos Solitons Fractals 2022, 156, 111821. [Google Scholar] [CrossRef]
- Wu, Y.; Ahmad, S.; Ullah, A.; Shah, K. Study of the fractional-order HIV-1 infection model with uncertainty in initial data. Math. Probl. Eng. 2022, 2022, 7286460. [Google Scholar] [CrossRef]
- Etemad, S.; Avcı, İ.; Kumar, P.; Baleanu, D.; Rezapour, S. Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version. Chaos Solitons Fractals 2022, 162, 112511. [Google Scholar] [CrossRef]
- Najafi, H.; Etemad, S.; Patanarapeelert, N.; Asamoah, J.K.K.; Rezapour, S.; Sitthiwirattham, T. A study on dynamics of CD4+ T-cells under the effect of HIV-1 infection based on a mathematical fractal-fractional model via the Adams-Bashforth scheme and Newton polynomials. Mathematics 2022, 10, 1366. [Google Scholar] [CrossRef]
- Abbas, M.I.; Ragusa, M.A. On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function. Symmetry 2021, 13, 264. [Google Scholar] [CrossRef]
- Fernandez, A.; Mohammed, P. Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Methods Appl. Sci. 2021, 44, 8414–8431. [Google Scholar] [CrossRef]
- Yang, X.; Farid, G.; Nazeer, W.; Yussouf, M.; Chu, Y.-M.; Dong, C. Fractional generalized Hadamard and Fejer-Hadamard inequalities for m-convex functions. AIMS Math. 2020, 5, 6325–6340. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Sarikaya, M.Z.; Baleanu, D. On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals. Symmetry 2020, 12, 595. [Google Scholar] [CrossRef]
- Jia, W.; Yussouf, M.; Farid, G.; Khan, K.A. Hadamard and Fejer-Hadamard inequalities for (α, h − m) − p-convex functions via Riemann-Liouville fractional integrals. Math. Probl. Eng. 2021, 2021, 9945114. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, J.; Saleem, M.S.; Ahmad, I.; Waheed, S.; Pan, L. Fractional integral inequalities for h-convex functions via Caputo-Fabrizio operator. AIMS Math. 2021, 6, 6377–6389. [Google Scholar] [CrossRef]
- El Shahed, M. Fractional Calculus Model of Semilunar Heart Valve Vibrations; International Mathematica Symposium: London, UK, 2003. [Google Scholar]
- Kulish, V.V.; Lage, J.L. Application of fractional calculus to fluid mechanics. J. Fluids Eng. 2002, 124, 803–806. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific Publishing Company: Singapore, 2000; pp. 87–130. [Google Scholar]
- Hu, G.-J.; Rasid, S.; Farooq, F.B.; Sultana, S. Some inequalities for a new class of convex functions with applications via local fractional integral. J. Funct. Spaces 2021, 2021, 6663971. [Google Scholar] [CrossRef]
- Khan, K.A.; Ditta, A.; Nosheen, A.; Awan, K.M.; Mabela, R.M. Ostrowski type inequalities for s-convex functions via q-integrals. J. Funct. Spaces 2022, 2022, 8063803. [Google Scholar] [CrossRef]
- Rashid, S.; Işcan, I.; Baleanu, D.; Chu, Y.-M. Generation of new fractional inequalities via n-polynomials s-type convexity with applications. Adv. Differ. Equ. 2020, 2020, 264. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Rashid, S.; Hammouch, Z.; Chu, Y.-M. Some new local fractional inequalities associated with generalized (s,m)-convex functions and applications. Adv. Differ. Equ. 2020, 2020, 406. [Google Scholar] [CrossRef]
- Kashuri, A.; Agarwal, R.P.; Mohammed, P.O.; Nonlaopon, K.; Abualnaja, K.M.; Hamed, Y.S. New generalized class of convex functions and some related integral inequalities. Symmetry 2022, 14, 722. [Google Scholar] [CrossRef]
- Ma, Y.; Saleem, M.S.; Bashir, I.; Xiao, Y. Schur, Hermite-Hadamard, and Fejer type inequalities for the class of higher-order generalized convex functions. J. Funct. Spaces 2022, 2022, 8575563. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Kashuri, A. Fractional Hermite-Hadamard-Fejer inequalities for a convex function with respect to an increasing function involving a positive weighted symmetric function. Symmetry 2020, 12, 1503. [Google Scholar] [CrossRef]
- Sun, W. Generalized harmonically convex functions on fractal sets and related Hermite-Hadamard type inequalities. J. Nonlinear Sci. Appl. 2017, 10, 5869–5880. [Google Scholar] [CrossRef]
- Aljaaidi, T.A.; Pachpatte, D.B. The Hermite-Hadamard-Mercer type inequalities via generalized proportional fractional integral concerning another function. Int. J. Math. Math. Sci. 2022, 2022, 6716830. [Google Scholar] [CrossRef]
- Bounoua, M.D.; Tang, J. On some Volterra-Fredholm and Hermite-Hadamard-type fractional integral inequalities. J. Inequal. Appl. 2022, 2022, 36. [Google Scholar] [CrossRef]
- Jensen, J.L.W.V. Sur les fonctions convexes et les inegalites entre les valeurs moyennes. Acta Math. 1906, 30, 175–193. [Google Scholar] [CrossRef]
- Farid, G.; Rehman, A.U.; Zahra, M. On Hadamard inequalities for k-fractional integrals. Konuralp J. Math. 2016, 4, 79–86. [Google Scholar]
- Diaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 2007, 15, 179–192. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, 1st ed.; North-Holland Mathematics Studies: 204; Elsevier: New York, NY, USA; London, UK, 2006. [Google Scholar]
- Kwun, Y.C.; Farid, G.; Nazeer, W.; Ullah, S.; Kang, S.M. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar] [CrossRef]
- Wu, S.; Samraiz, M.; Mehmood, A.; Jarad, F.; Naheed, S. Some symmetric properties and applications of weighted fractional integral operator. Symmetry 2022. submitted. [Google Scholar] [CrossRef]
- Farid, G. Study of a generalized Riemann-Liouville fractional integral via convex functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020, 69, 37–48. [Google Scholar] [CrossRef]
- Farid, G.; Nazeer, W.; Saleem, M.S.; Mehmood, S.; Kang, S.M. Bounds of Riemann-Liouville fractional integrals in general form via convex functions and their applications. Mathematics 2018, 6, 248. [Google Scholar] [CrossRef]
- Farid, G. Some Riemann-Liouville fractional integral inequalities for convex functions. J. Anal. 2019, 27, 1095–1102. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samraiz, M.; Malik, M.; Saeed, K.; Naheed, S.; Etemad, S.; De la Sen, M.; Rezapour, S. A Study on the Modified Form of Riemann-Type Fractional Inequalities via Convex Functions and Related Applications. Symmetry 2022, 14, 2682. https://doi.org/10.3390/sym14122682
Samraiz M, Malik M, Saeed K, Naheed S, Etemad S, De la Sen M, Rezapour S. A Study on the Modified Form of Riemann-Type Fractional Inequalities via Convex Functions and Related Applications. Symmetry. 2022; 14(12):2682. https://doi.org/10.3390/sym14122682
Chicago/Turabian StyleSamraiz, Muhammad, Maria Malik, Kanwal Saeed, Saima Naheed, Sina Etemad, Manuel De la Sen, and Shahram Rezapour. 2022. "A Study on the Modified Form of Riemann-Type Fractional Inequalities via Convex Functions and Related Applications" Symmetry 14, no. 12: 2682. https://doi.org/10.3390/sym14122682
APA StyleSamraiz, M., Malik, M., Saeed, K., Naheed, S., Etemad, S., De la Sen, M., & Rezapour, S. (2022). A Study on the Modified Form of Riemann-Type Fractional Inequalities via Convex Functions and Related Applications. Symmetry, 14(12), 2682. https://doi.org/10.3390/sym14122682