Inequalities of the Ostrowski Type Associated with Fractional Integral Operators Containing the Mittag–Leffler Function
Abstract
1. Introduction
2. Main Results
3. Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ostrowski, A. Über die Absolutabweichung einer dierentierbaren Funktion von ihren Integralmittelwert. Comment. Math. Helv. 1938, 10, 226–227. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Rassias, T.M. Ostrowski-Type Inequalities and Applications in Numerical Integration; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2002. [Google Scholar]
- Zafar, F. Some Generalizations of Ostrowski Inequalities and Their Applications to Numerical Integration and Special Means. Ph.D. Thesis, Bahauddin Zakariya University, Multan, Pakistan, 2010. Available online: http://prr.hec.gov.pk/jspui/handle/123456789/1154 (accessed on 1 November 2022).
- Set, E. New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef]
- Liu, W. Some Ostrowski type inequalities via Riemann-Liouville fractional integrals for h-convex functions. arXiv 2012, arXiv:1210.3942. [Google Scholar]
- Kermausuor, S. Ostrowski type inequalities for functions whose derivatives are strongly (α,m)-convex via k-Riemann-Liouville fractional integrals. Stud. Univ. Babes-Bolyai Math. 2019, 64, 25–34. [Google Scholar] [CrossRef]
- Lakhal, F. Ostrowski type inequalities for k-β-convex functions via Riemann—Liouville k-fractional integrals. Rend. Circ. Mat. Palermo Ser. 2021, 70, 1561–1571. [Google Scholar] [CrossRef]
- Al-Deeb, A.; Awrejcewicz, J. Ostrowski-Trapezoid-Grüss-type on (q,δ)-Hahn difference operator. Symmetry 2022, 14, 1776. [Google Scholar] [CrossRef]
- Gürbüz, M.; Taşdan, Y.; Set, E. Ostrowski type inequalities via the Katugampola fractional integrals. AMIS Math. 2020, 5, 42–53. [Google Scholar] [CrossRef]
- Basci, Y.; Baleanu, D. Ostrowski type inequalities involving ψ-hilfer fractional integrals. Mathematics 2019, 7, 770. [Google Scholar] [CrossRef]
- Faisal, S.; Khan, M.A.; Khan, T.U.; Saeed, T.; Alshehri, A.M.; Nwaeze, E.R. New “conticrete” Hermite–Hadamard-Jensen-Mercer fractional inequalities. Symmetry 2022, 14, 294. [Google Scholar] [CrossRef]
- Almutairi, O.; Kilicman, A. A review of Hermite-Hadamard inequality for α-type real-valued convex functions. Symmetry 2022, 14, 840. [Google Scholar] [CrossRef]
- Farid, G.; Mubeen, S.; Set, E. Fractional inequalities associated with a generalized Mittag-Leffler function and applications. Filomat 2020, 34, 2683–2692. [Google Scholar] [CrossRef]
- Wiman, A. Uber den fundamental satz in der theori der functionen. Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Shukla, A.K.; Prajapati, J.C. On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 2007, 336, 797–811. [Google Scholar] [CrossRef]
- Salim, T.O.; Faraj, A.W. A generalization of Mittag-Leffler function and integral operator associated with integral calculus. J. Fract. Calc. Appl. 2012, 3, 1–13. [Google Scholar]
- Rahman, G.; Baleanu, D.; Qurashi, M.A.; Purohit, S.D.; Mubeen, S.; Arshad, M. The extended Mittag-Leffler function via fractional calculus. J. Nonlinear Sci. Appl. 2017, 10, 4244–4253. [Google Scholar] [CrossRef]
- Andrić, M.; Farid, G.; Pečarić, J. A further extension of Mittag-Leffler function. Fract. Calc. Appl. Anal. 2018, 21, 1377–1395. [Google Scholar] [CrossRef]
- Farid, G. Some Riemann-Liouville fractional integral inequalities for convex functions. J. Anal. 2019, 27, 1095–1102. [Google Scholar] [CrossRef]
- Zhang, Z.; Farid, G.; Mehmood, S.; Jung, C.Y.; Yan, T. Generalized k-fractional Chebyshev-type inequalities via Mittag-Leffler functions. Axioms 2022, 11, 82. [Google Scholar] [CrossRef]
- You, X.; Farid, G.; Maheen, K. Fractional Ostrowski type inequalities via generalized Mittag–Leffler function. Math. Probl. Eng. 2020, 2020, 4705632. [Google Scholar]
- Kwun, Y.C.; Farid, G.; Nazeer, W.; Ullah, S.; Kang, S.M. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar] [CrossRef]
- Farid, G. Some new Ostrowski type inequalities via fractional integrals. Int. J. Anal. Appl. 2017, 14, 64–68. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Mehmood, S.; Farid, G.; Nonlaopon, K. Inequalities of the Ostrowski Type Associated with Fractional Integral Operators Containing the Mittag–Leffler Function. Symmetry 2022, 14, 2590. https://doi.org/10.3390/sym14122590
Chen D, Mehmood S, Farid G, Nonlaopon K. Inequalities of the Ostrowski Type Associated with Fractional Integral Operators Containing the Mittag–Leffler Function. Symmetry. 2022; 14(12):2590. https://doi.org/10.3390/sym14122590
Chicago/Turabian StyleChen, Dong, Sajid Mehmood, Ghulam Farid, and Kamsing Nonlaopon. 2022. "Inequalities of the Ostrowski Type Associated with Fractional Integral Operators Containing the Mittag–Leffler Function" Symmetry 14, no. 12: 2590. https://doi.org/10.3390/sym14122590
APA StyleChen, D., Mehmood, S., Farid, G., & Nonlaopon, K. (2022). Inequalities of the Ostrowski Type Associated with Fractional Integral Operators Containing the Mittag–Leffler Function. Symmetry, 14(12), 2590. https://doi.org/10.3390/sym14122590