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Abstract: Integral operators with the Mittag-Leffler function in kernels play a very vital role in
generalizing classical integral inequalities. This paper aims to derive Ostrowski-type inequalities for
k-fractional integrals containing Mittag—Leffler functions. Several new inequalities can be deduced
for various fractional integrals in particular cases. Applications of these inequalities are also given.
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1. Introduction

In [1], Ostrowski proved the following inequality, which is well known as the Os-
trowski inequality.

Theorem 1. Let 7 : I — R be a differentiable mapping in 1°, the interior of I, and uy,up € I°,
uy < up. If|F{ ()| < M forall t € [uq,us], then for A € [uq, u2], the following inequality holds:

L Gl
4 (up—up)?

1 1y ”1;112)2
J—"l(/\)—i/ ]—](t)dt‘ <

Up — U1 Juy

](“2 —up) M. 1)

The inequality (1) provides the boundedness of the difference between the value F7(A)
of F1 at an arbitrary point A of [u7, up] and its integral mean, le m uulz Fi(t)dt, provided
that the derivative F] is bounded. From the point of view of applications, this inequality
gives the error bounds of the midpoint and trapezoidal numerical quadrature rules, and its
applications to special means can be found; see [2,3].

In the last few years, several authors have studied classical inequalities for various
types of fractional integrals by using different kinds of convex functions. For example,
Set [4] and Liu [5] proved the Ostrowski-type inequalities for Riemann-Liouville fractional
integrals via s-convex and h-convex functions. Kermausuor [6] and Lakhal [7] gave the
Ostrowski-type inequalities for Riemann-Liouville k-fractional integrals via strongly («, m)-
convex functions and k — B-convex functions. In [8], Set et al. proved the Ostrowski-type
inequalities for conformable fractional integrals via convex and AG-convex functions. In [9],
Giirbiiz et al. gave the Ostrowski-type inequalities for Katugampola fractional integrals
via p-convex functions. In [10], Basci and Baleanu derived the Ostrowski-type inequalities
for y-Hilfer fractional integrals. In [11], Faisal et al. established the Hermite-Hadamard-
Jensen—Mercer fractional inequalities for convex functions, and similar inequalities for
a-type real-valued convex functions were also given in [12]. In [13], Farid et al. derived
the Ostrowski-type inequalities for fractional integrals containing an extended generalized
Mittag-Leffler function.
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Inspired by the above research, our aim in this paper is to derive the Ostrowski-type
inequalities for the generalized k-fractional integrals given in Definition 3 that contain
the Mittag—Leffler function (8). One can deduce several new and existing Ostrowski-type
inequalities. Some applications of the established inequalities are discussed in the penulti-
mate section of this paper.

The Mittag—Leffler function plays an important role in solving fractional differential
equations. It is also used in the generalization of fractional integrals. In the literature,
several inequalities have been established for various fractional integrals containing the
Mittag—Leffler function. The Mittag-Leffler function has been generalized by many au-
thors: For example, Wiman [14], Prabhakar [15], Shukla and Prajapati [16], Salim and
Faraj [17], and Rahman et al. [18] have contributed significantly to its generalizations and
extensions. Recently, Andri¢ et al. [19] defined the extended generalized Mittag—Leffler
function as follows.

Definition 1. Let p,a, ¢, 9,@ € C, R(p), R(«a), R(¢) > 0, R(w) > R(F) > Owithp > 0,
€>0,and 0 < ¢ < e+ R(p). Then,

Ve, w = l9+”€/a7 8) (@)ne t"
Eow (i1 ; BOo—0) Tonta) P @

__r
where By, is the generalized beta function By (x,y) fO 1 Y=te TN dt and (@) is the

Pochhammer symbol (@) = %

One can see that B, (x,y) = B, (y, x) and that B, (.,.) is symmetric with respect to its
arguments. Symmetry is an important property; things that have this property look more
beautiful and fascinating. Likewise, symmetric functions play a very vital role in the theory
of mathematical inequalities. Many classical inequalities for symmetric functions have
been studied. For example, real functions that are defined on [uy, 4] and are symmetric
about ””T“’z satisfy the following generalization of the Hadamard inequality.

Theorem 2. Let F1 : I — R be a convex function defined on an interval I C R and uy,up € I,
where uy < uy. If F, is a symmetric function about w, then the following inequality holds:

f1<”1;”2> / ® F(A)dA < / ® AW R < 1(”1);“”2) / R (dA. ()

up

A version of the Hadamard inequality for convex and symmetric functions about “15*2 +”2

via Riemann-Liouville fractional integrals was given in [20]. Next, we define generahzed
fractional integrals as follows.

Definition 2 ([19]). Let F; : [ug, up] — R, 0 < uy < up, be an integrable function. In addition,
let p,a, 9, 0,0,6 € C, R(p), R(a), R(¢p) > 0, and R(w) > R(F) > 0withp > 0, > 0, and
0 < ¢ < e+ R(p). Then, for A € [uy,uy], the generalized fractional integrals are defined by:

A

(z;’l;f;&ul ]:1)(A;p) = / (A= TESRSC(B(A — b)F; p) Fu()dt, 4)
1
up

(Zﬁiii’,‘iuzﬂ)(m p)= [ (=P TERE 6= A p) R (1t (5)

Zhang et al. [21] introduced the generalized k-fractional integrals involving the Mittag—
Leffler function as follows:

Definition 3. Let Fq, F, : [u1,uz] — R, 0 < ug < up, be two functions, such that Fy is
positive and Fy € Lqluy, up), and F, is differentiable and strictly increasing. In addition, let
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S,a,¢,9,0 € C, R(a),R(¢p) >0, R(@) >RN(Y) >0withp >0,p,6>0,0<¢<e+p, and
k > 0. Then, for A € [uq,uy], the generalized k-fractional integrals are defined by:

A
(’%ZZZ’;:;’,‘EMTH)(A;P):/Nl(fz(A)—fz())”115;925,,‘;?( (F2(A) = Fa(1))5; p) Fr (D) F5 (), (6)

(nzieee F)(ip) = _/A”Z<fz<t) — B (M) FTE S (8(Fa(t) — Fa(A)Es p) Fr () F()dt, (7)

where Eﬁ;fp‘:(t, p) is the modified Mittag—Leffler function defined by:

O+ng,@—0) (@) "
B®,@—19) k[i(on+a) (¢)ne

Eﬂegw Z,BP

papk ( ®)
Remark 1. From fractional integrals (6) and (7), various new fractional integrals containing the
Mittag—Leffler function can be deduced (for details, see [21], Remark 1). Further, the fractional
integrals (6) and (7) reproduce many already-defined fractional integrals (for details, see [21],
Remark 2).

For a constant function, Zhang et al. [21] proved the following:

(5220252, ) Qi) = KF0) — P FERSER, 6(R0) ~ Ba(0)ip) O
and
(kuZﬁj;j,;‘;uzl)<A;p>:k<f2<u2>—fz<A>>kE;?;i,t°¢k< (Fa(t) = F(A)ksp). (10)

We have organized this paper as follows: In the upcoming section, we first establish an
identity in order to derive Ostrowski-type inequalities. Then, by applying this identity and
k-fractional integrals (6) and (7), Ostrowski-type inequalities are established. It is mentioned
that several new Ostrowski-type inequalities can be deduced for the well-known fractional
integrals compiled in [21] (Remarks 1 and 2). In the last section, some applications of the
presented results are given.

2. Main Results
First, we establish the following lemma for the modified Mittag-Leffler function.

Lemma 1. If ,a,¢,0,@ € C, R(a), R(¢) > 0, R(@w) > R(P¥) > Qwithp > 0, p,e > 0,
0<g<e+p,andk >0, then

! §2 0
)] = T2 pocce o o

??‘\'b

(5 )N B2 0 R0 b ay

Proof. We have

k‘\’a

()10 e 70k 12)

Zﬁp(ﬂ+ng,co 9 (@) (I (F) FHE2F®)
= B, @—10) kIk(pn+w)

@
_pBleise-0) (@ om0
= P@—9)  klpn+a—k k(e :

After simple computation, the identity (11) is achieved. O
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Next, we give the generalized k-fractional Ostrowski-type inequality containing the
modified Mittag—Leffler function.

Theorem 3. Let F; : I — R be a differentiable mapping in 1°, the interior of I, and uq,uy € 1°,
uy < up. In addition, let F, : [u1, uz] — R be an increasing and differentiable function with
Fy € Lluy, up]. If Fy is integrable and | F{(F,(t))| < M forall t € [uy, uy), then for a, p > k,
the following inequality for fractional integrals (6) and (7) holds:

Ea =]

ip) + (Fa(A) — Fa(ug))i ! (13)

‘k<(}"2(142) - -7'"2()\))gflEzfz'/gqﬁfi@(fz(uz) —F2(A))

B3,6,¢, 4 B,e,c,
<ELELOF) ~ Faln)) Fip) ) A (F ) = (2050, e P10 72 ) )

==

o.B—kp,0,uy

=

n (1%2219,8,9@ Fio ]:2) (A;p)) ’ < kM ((]—"2()\) — Fao(u1))
)

+ (Falttz) — Fa(A)) FEPEE2 (8( Fa (2) — Fa(A))

£,C, [
X Eynoi (8(Fa(A) = Fa(w)) % p ot )

o,0,¢,k
B k 96,0 . k 0,e,6,0 .
(2t 1) in+ (s2050,1) i) ) )

Proof. Let A € [uy, up] and & > k. Then, for the monotonically increasing function F, and
the Mittag—Leffler function (8), we can write:

(F2(A) - Fz(t))%*lEﬁ,’Zf,fZ(ﬁ(FzM) — Ra(t) 55 p) F5(1) (14)
< (M) - fz(ul))%_115;9;',%(5(}-2(7\) — ()55 p)Fo(t) t€ [ug, A

From the boundedness condition of F] and (14), we have the following inequalities:

/ f(M ~ F(RO)(F2N) ~ Fa0)F T ELEL (G(Fa(N) — Fa(6)f; p) Fh(n)ds (15)
< (Ra1) = Falu) EERESS (0(F(M) = Falun)ip) [ f(M ~ F(FR0) Fy(b),
/ f(M T F(F0))(F2(A) — Fa(0)F T EREL (G(FalA) — Fa(6)f; p) Fh(t)ds (16)
< (R() - F(m) HESSR (R0 - Faun)Ep) [ f(M + F{(Fa0) F (1)

First, we consider the inequality (15) as follows:

M [ (Fa(0) ~ Faa) BRSSP (1) — Fala)) s p) P a7)
-/ f(fzw ~ Fat)ETEXEL (5(F2 (V) — Fa(6) s p) F(Fa6) Fy(t)dt
< (F(A) = ) Egss (0(F2(1) = Falun)) i) [ fw ~ F{(Fa(0) F(t)at.

The inequality (17) takes the following form after integrating by parts and using (11):

K(F2(A) = Fa(un) F NS (5(F2(A) = Fa(mn))E; p) Fa (F2(A) (18)

B, 23
(520 Fro 72 ) i) < kM ((Ra(0) - Faa)f

Y,e,c, [ 0,6,6,
EVEL 00 - Fam)ip) - (5,2050 1) ip) ).
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Similarly, by using the same technique, from (16), one can achieve the following
inequality:

(5,205, F10.52) 0sp) KN — Faun

><Eﬁii‘i(&(fzu)—B(ul))%;p)ﬂ(fzm»SkM (Fa(A) = Falug))k

0,6,6, 4 06,6,
EER 070 ~ Falun)ip) - (520050 1) (ip) ).
From (18) and (19), the following inequality is achieved:

[4
k-

[k(F2(A) = Fa(un)) T ESRSL (8(F2 (V) = Falun) 5 p) Fi(F2()) (20)
(2t Fro R ) i) < o (1) - Fatu))f
B 0(70) - Fa)hip) - (52057 1) (ip) ).

Now, on the other hand, let A € [uj,u] and B > k. Then, for the monotonically
increasing function F, and the Mittag-Leffler function (8), we can write:

4
k

.

(£) (21)
ip)Fa(t) tE M),

(Fa(t) —fzm))“lrs;fgf,;z( (Fa(t) = Fa(A))E; p)
< (Falua) — Fa(A) EEVEER (5( Fa(ua) — Fa(A)

Eau =]

From the boundedness condition of 7] and (21), we have the following inequalities:

[ M= FEO)F) = B ELEER 6(Fa () - F(0)

< (Faa) = Fa(A)) ¥ EGSL (8(Fa(ua) — Fa(M))

;) Fa(t)dt (22)

> ~—

) [ (M= B F(0)r

and

[ M+ FFEDF0) - RO 6 - R0 b p P 23)

)
< (Faluz) — B FTESESS (0(Fa) = R Eip) [ (M o+ FH(Fa() Fa(t)e

0.B.p.k

Following the same technique as that for (15) and (16), one can obtain from (22)
and (23) the following inequality:

4
k

K(Falua) ~ Fa()E T ELER (6(Falma) — FalA) 5 p) Fr(Fa(V) (24)

B

19, ,C =
—~ <';Zzp,;€g¢,5lu2_f1 o J-"2> (A; p)’ < kM ((fz(uz) — F2(A))F

96,6, [ 06,6,
B (R0 - (0)ip) - (52050, 1) (ip) ).
From inequalities (20) and (24), the inequality (13) is obtained. O

Corollary 1. For a = B in (13), the following inequality holds:
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£ p) + (Fa(A) = Fa(ug)) ! (25)

(7200 ~ P2 ELEL O Falu) — Fa()

XEﬂ,e,g,co((s(]:z()L) _ ]-"z(ul))%}

Be,6,
0,0,k F1 (-FZ()\)) - ((I%ZZp,Zggqy,é,uffl o ./—"2) ()\;p)
kM

p)
(52 s 7107 W) )| < (2200 = A

>

X Erii O(R2(0) = Falin) E3p) + (Faluz) = (A FEQES (0(F2(m2) = Fo(M)

_ k ¥,e,6,0 . k 0,6,6,0 .
< <.F2 Z”'“'¢,5,ul+l> (A p)+ ( B s 1) (A; p)) > .

Remark 2. In Theorem 3, for k = 1, we attain Theorem 2 from [22]. For § = p = 0, we
attain Theorem 7 from [23]. For F»(A) = A and k = 1, we attain Theorem 2.1 from [13]. For
Fa2(A) = Aand 6 = p = 0, we attain Theorem 1.2 from [24].

ip)

The next result is a general form of a generalized k-fractional Ostrowski inequality
containing the modified Mittag—Leffler function (8).

Theorem 4. Let 77 : I — R be a differentiable mapping in 1°, the interior of I, and uy,up € I°,
uy < up. In addition, let F, : [uq,uz] — R be an increasing and differentiable function with
F} € Lluy,up). If Fy is integrable and N° < F{(Fa(t)) < M forall t € [uy,up), then for
«, B > k, the following inequalities for fractional integrals (6) and (7) hold:

kF1(F2(A)) <(Fz(/\) — Fa(m) FELER (5(Fa(A) — Falun)E;p) — (Faluz) = Fa(A)) 1 (26)
< B 0(Fa0) = Fa)Eip) ) = (520050 0 F1 0 72) i)

~ (520858 s T 0 F) ) ) < KM (1) ~ Falin ) EER (1) ~ Faon) )

4G [ 96,6,
+ (Falu) - B PELE0(F) - BO)ip) — ( (52052,1) (ip)
k 9,6, .
* (fz 20 pgbu; 1) (A;p) )
and

kFy(F2(A)) ((]:2(”2) - ]_-2(/\))571}5;9:;:%(5(}-2(”2) ~ BN)Eip) = (Fa(A) = Falug)) i (27)

d,¢,¢, [ 98,6,
< B O ) ~ Fal))bip) ) + ( (52005 0 Fi 0 F2) 0)

98¢, « 8,66, 4
(2050 s FroR2) i) ) < = ((F2(0) = Faln) FESE (BN - Falm)ip)

B [
+ (Fala) = Fo () FENEED (6(Fa(u2) = Fo(A)) 5 p) - ((%z;’,;i;;'f;ﬁl) (A;p)
k ZUeg@ .
# (s wn) )
Proof. From the boundedness condition of ]—'1’ and (14), we have the following inequalities:

/u/\(/\/l — Fi(F2(t))(Fa(A) — fz(f))%flEZ'i';f@(fz()\) — Fa(0))E; p) Fy(t)dt (28)
A

< (B = R E SO0 ~ ) bp) [ (M- FEBO) Fb,
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/ f(f{ (F2(5)) = N)(F2(A) = Fa(0)FESEL (5(F2 () = Fa(h) 5 p) F (1)t (29)
< (F(A) = Fa(m)E T ESS (6(F2(1) = Falun)) i) [ (FHED) - N)F

From inequalities (28) and (29), after simple computation, one can achieve the follow-
ing inequalities:

K(F2(V) = Falun))F TESRER (6(Fa(N) = Falun) Eip) Fr(Fa(N) = (5 20550, 5 s Fr0 F2) (Aip) (30)
< kM ((fzm — Fa()) FESSR(8(F2(A) = Fa(un)) Eip) — (b, 20050 1) (w)),

and
(2050 5 s 10 F2) (i p) = K(F2 (V) = Fa(un))F T EQRED (8(F2(A) = Faln) £ p) F1 (Fa(A) (31)

< —kN<(fz(A) — Fa(in) FENeSR (6(F2(A) = Fa(un)ip) = (B 20050 1) (% p>).

Now, on the other hand, from the boundedness condition of .7-'{ and (21), we have the
following inequalities:

[ M= FEONFEO - RO EEEL6FD - B Fbar (32)
< (Falua) = B0 FTESEES (0(Fam) = R Eip) [ (M = F(F2(0) Fa(t)a

and
[P FFA) = N (Falt) = B ETESERE(FAE) — R p) Tt (33)

< (Fa() = B EESER (6(Fa () — P Eip) [(FH(Falt) — M) Fp(hya.

From inequalities (32) and (33), after simple computation, one can achieve the follow-
ing inequalities:

B_ [
(205 s F1 0 F2) (i p) = k(Fa(12) = Fa(W)F T EN S0 (0(Faluz) = F(A)F3 p) Fi(F2(4)) (34)

B 4
< kM ((fzwz) — R (M) FESS (6(Fau2) = Fo() i) — (5, 20555 1) wm),

and

K(Fa () — Fa(A)) F VPSS9 (8( iy (ua) — Fa(A))

vy i FFEW) - (2050 FioFa) (Aip) (35)

0Bk p,0,u;

B [
< —kN<(f2(u2) — R (M) FESS (0(Fa(u2) = Fo () Eip) — (5205550 1) w)).

From inequalities (30) and (34), the inequality (26) is achieved. Further, from inequali-
ties (31) and (35), the inequality (27) is achieved. [
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Theorem 5. Under the assumptions of Theorem 4, the following inequalities hold:

kF1(Fa(A)) ((sz — Fo(ur) FIEDSD (8(F2(A) — Fa(ur) 5 p) + (Faluwa) — F2(A) 1 (36)

86, ¢ Bec,
X Ey gt (0(Fa(uz) — ]:2(/\))“17)) - ((’%zzp;f;fq,,é,urﬂ ° fz) (A p)

+ (1}223’;’5’,?4),5,“2,]:1 o fz) (A p)) <kM ((fz(A) — Fa(ug))*

96,6, 0 86,
< ELER (R0 ~ Fali))p) — (5,20055,1) (ip) )
é [
_ kN((fz(uz) —Fa(A))F Eg,’;f’ji@(fz(uz) - fz()x))z;p) - (’}ZZ;’;:;?/M;l) (A; p)),

and

4
k

— kF1(F2(A)) ((]:2(”2) — RV ETEVS R (6(Faln2) — Fa(M)Esp) — (F2(A) = Falm))E ! (37)

o8Pk
x BV (0(Fa(h) = Fa(w))Esp) ) + ( (5 20050 5 Fio Fa) (Aip)
P,DC,(P,k 2 2 1 7 P P p,lX—k,(I),(S,LlIr 1 2 7 P
8
(20550 50 1o F2) i) ) < KM ((Faliz) = a2
88,6, e B8,
< B 0(Fan) ~ R Fip) - (5,20550,1) i)
- k/\/((fz(/\) — o) FEQeSR (8(F2(A) = Fa(un)ip) = (b 20050 1) (x; p>)‘
Proof. This proof is similar to the proof of Theorem 4. From inequalities (30) and (35),
the inequality (36) is attained. Further, from inequalities (31) and (34), the inequality (37)

is attained. [

Theorem 6. Under the assumptions of Theorem 3, the following inequality holds:

\k(fl (Fal12))(Falu2) — Fa(M) E T ELEED (5(Fa(az) — Fa(A))E; p) + Fa(Falwr)) (38)

o e
(Fa(A) = Fa(u1) F T Epes R (3(Fa(A) = Fa(m)) ¥ p>) - ((’%ZZ;’,;'E'&,WE 0 F) (123 p)

(520 s FroF2) ) ) | < M| (1) ~ Falo)f

EalEs]

x EYSS (5(Fy(A) — Fa(un)); p) + (Falua) — Fa(A) FEVSSS (8( Falua) — Fa(h)

k 2080 . k Z9e6@ .
_ <(fzzp,a,¢,m_1) (u1;p) + (Fzzp,m,wl)(uz,p)ﬂ.

ip)

Proof. Let A € [uy,up] and « > k. Then, for the monotonically increasing function 7, and
the Mittag-Leffler function (8), we can write:

(Fa(t) = Fa(un)) EESTSR (3(Fa(t) — Falu)) 5 p) F (1) (39)
< (FaA) = Falun) EESSR (O(Fa(A) = Fa(wn))E; p) F3(t), ¢ € [, A].

From the boundedness condition of F] and (39), we have the following inequalities:
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/ jw — FU(F2(0))(Falt) = Falun) FELA2(S(Folt) — Falun))¥; p) Fi(t)dt (40)
< (R2() - Falm) SR (G(FN) - Faun)Ep) [ f(M — Fi(Fa(0) Fy ()t
and
/ f(M + F{(Fa(0) (Falt) — Falun))F ESS2 (5(Fat) — Falun)); p) F () (41)
< (R2() - Fa(m)HESSR (R0 - Faun)Ep) [ f(M + F{(Fae) Fy()d.
First, we consider the inequality (40) as follows:
42)

EEER (0(Fa(t) = Falun) 5 p) (1)t

M [ (Falt) ~ Falun))t - ERES
~ [(R) - Bl F SR G (1) — Fam))
(M= FFEO) Fabat

< (Fa(N) = Falun)FTESSS (0(Fa(1) = o)) p) |
Uy
The inequality (42) takes the following form after integrating by parts and using

(43)

£ p)FL () F{(Fa(t))dt

Lemma 1:
%_1Ez9,s,g,w(5(]_—2()\) _ _7-'2(u1))§;r7)]:1(‘7:2(”1))

(L Zeey o0 Fro Fa ) (ui;p) = K(Fa(A) = Fa())F T Epese

F2p,a—kp,6,A
5552, ).

< kM ((fz(/\) — Fo(u) FESST(0(F(V) = Fau))ip) — (S, 2055
Similarly, by using the same technique as that from (41), one can achieve
K(F2(A) = Fa(un))F T ENSD (6(Fa(A) = Faln) B3 p) Fa (Fa(mn) — (2050, 51 Fro o) (i p) (44)
< kM ((72() - Fal) EREES (RN - Falun)ip) — (,20250,1) ip) ).
From (43) and (44), the following inequality is achieved:
DR Fa) — (5 208500 Fr 0 F2) ()|

< kM ((Fa() = Falm) ELEER (RN = Fal) i) = (5,205, 1) i) ).
Now, on the other hand, let A € [uj,uy] and B > k. Then, for the monotonically

increasing function F, and the Mittag-Leffler function (8), we can write:

(45)

(1) = Falon)) I EREES G - Faon)

(Falia) — Fa(0) T ELSSS (8 Falwa) — Falt) ) FA(1) (46)
< (Faluz) — Fa(A)ETEVESS (8( Falua) — Fa(A)f; ) FA(0), t € (A, wa).

From the boundedness condition of 7] and (46), we have the following inequalities:

[ M= AR (Fal) - B0) EESSR 6(Falu) - Fa(0) i p) Fy(e)a @)

)
LB 6(Falia) — P Eip) [ (M = F(F(0) F(0)dt

< (Faluz) = Fa(A) FE gy

and
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7 Mt A FE0) (Falia) - Fa0) EENS (0(Fal2) — Fal)) i p) Tty (48)
< (Faluz) = B0 FELESS (0(Fa ) = B Eip) [ (Mt F(Fa(0) Fa(e)a.

Following the same technique as that for (40) and (41), one can attain from (47) and (48)
the following inequality:

B_ [4
}k(ﬁ(uz) — BT BV R (0(Falua) = FaM) s p) Fr(Fa(2)) — (5 20510y s 00 F1 0 F ) (12 p>' (49)
< kM((Fa) = Fo(A)PES ST (0(Falua) = (AN ip) = (5, 2055501 (waip) ).

From inequalities (45) and (49), the inequality (38) is attained. [J

Some direct consequences are given below.

Corollary 2. For « = B in (38), the following inequality holds:
’k (fl(]:z(uz))(fz(uz) - fz()\))%_1E§f;:§§fz(5(fz(uz) — R(A)E;p) + Fi(Fa(m)) (50)
(Fa() = Fa(m)) FEpLSR(0(F2(A) fz<u1>>i;p>) - ((’%ﬁﬁi@k‘?@a,ﬁl 0 Fy ) (uz;p)
(5200 Fro ) ) ) | < M| (1) = Falo)f
X EVSQ(8(Fa(A) = Fa(un); p) + (Falua) — Fa(A) F LSS (8(Fa(uz) — Fa(A))

0,0,k

k 9,e,6,0 A k 0,e,6,0 .
o ((]‘—2 Zp,oc,(p,&,/\* 1) (ul’ P) + (]:z Zp,a,zp,é,/H 1) (qu P)) ] .

Eaa =]

ip)

Remark 3. In Theorem 6, for k = 1, we attain Theorem 4 from [22]. For § = p = 0, we
attain Theorem 9 from [23]. For F»(A) = A and k = 1, we attain Theorem 2.6 from [13]. For
F2(A) = Aand § = p = 0, we attain Theorem 1.4 from [24].

3. Applications

In this section, we give applications of Theorem 6. By applying Theorem 6 at the
endpoints of the interval [u7, uy| and adding the resulting inequalities, one can achieve the
following results.

Theorem 7. Under the assumptions of Theorem 6, the following inequality holds:

‘k(]’l(fz(uz))(fz(uz) — Fou) FEVESS (0(Falw) — Faun)) 5 p) + Fa (Falur)) (51)

1

a1 dec, [ Be,6,
(F2(u2) = Fo(un)) F T E, o (6(Fa (u2) — fz(ul))k?P)) - ((%Zp,;fquf1 ° -7:2> (u2; p)

(52000 s P10 F) i) )| < kM (F2(0) = s

2

=~

[ B
X Egvsf (6(Fa(u2) = Fa(ur)) 6 p) + (Falua) = Fa(un)) FES53 (0(Fa(uz) — Fo(A) 3 p)
k 8,6,6,0 . k 9,6,6,0 .
- ((.7:2 Zp,lx,qy,z)”,u; 1) (u1;p) + (]"2 Zp,ﬁ,lp,d,u{r 1) (12 p))} '

Proof. For A = uj and A = u3 in (38), by adding the resulting inequalities, the inequality (51)
is obtained. O

Corollary 3. For « = B in (51), the following error bounds of the Hadamard-type inequality hold:
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| aF200a)) AP 1 7 ) - Fafan) B (0 Fali) — Falan)) i) 2)

1 k 0,e,6,0 k 9,e,6,@
_E ( <-7:22p,:fk,¢,(5,u]:1 © }-2) (ul; P) + (fzzp,:fk,(p,é,uffl © ]:2 (uz,' P)

2

< kM| (Pal) = Faon)) FELSE2 0(Faluz) — Falon)) i)

1 k ZVe6@ . k Z%ecw .
5 (2 ) wp + (h2iem, 1)) )|

By applying Theorem 6 at the midpoint of the interval [uj, 1], one can achieve the
following result.

Theorem 8. Under the assumptions of Theorem 6, the following inequality holds:
‘k<]:1(f2(”2)) (fz(uz) -7 (ul —; . ) ) z_lEﬁ,’Z’f,!,‘Z (5 <J:2(“2) -5 <ul —; = ) ) %; P) (53)
+A(F) (£ P52 - A ) " poece (o(7(1512) - 7)) i;p))
(G gy 7o) )+ (521 1o oom))

o (52) ) (5 (52) )’
(- () e (o (-5 (1)) )
(2 ) )+ (5200 ) 0 ) |

Proof. For a = fand A = “'F*2 in (38), the inequality (53) is obtained. [

Example 1. Letd =0=p, Fo(t) =t, F1(t) =17, v > Land t € [uy,up],0 < uy < up. Then,
96,6,

Be,6, . _ 6,6,
we have Ep,oc,qj,k(t;p) = m, (k ZUEe®D ]-"1>(A,p) = (kI“,uf]i)(/\), <k Zoes ,]—‘1>

P2 o 0,uf F2Z o o013

(A;p) = ("Iar";]-‘l)()\)and |Fi(t)] < 'yugfl, where("Ia/ur]-‘l)(A) and (klmu;]-‘l)(/\) are k-analogs
of the left and right Riemann—Liouville fractional integrals. Hence, the inequality (52) takes the
following form:

| + ) (02 = ) =T (2 = 101) ((FZ, g #7) (01) + (T, #7) (12))|
2(a —k)

<

yu " (up — up) KL

4. Conclusions

Ostrowski-type inequalities for generalized k-fractional integrals containing the modi-
fied Mittag-Leffler function (8) were established. The outcomes of this paper include many
new and existing Ostrowski-type inequalities for various types of fractional integrals. Some
results are mentioned in the form of corollaries and remarks. An example is also provided.
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