Convergence of Inexact Iterates of an Algorithm Based on Unions of Nonexpansive Mappings in Metric Spaces
Abstract
1. Introduction
2. Preliminaries
3. The First Result
4. The Second Result
5. Examples
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bejenaru, A.; Postolache, M. An unifying approach for some nonexpansiveness conditions on modular vector spaces. Nonlinear Anal. Model. Control 2020, 25, 827–845. [Google Scholar] [CrossRef]
- Betiuk-Pilarska, A.; Domínguez Benavides, T. Fixed points for nonexpansive mappings and generalized nonexpansive mappings on Banach lattices. Pure Appl. Func. Anal. 2016, 1, 343–359. [Google Scholar]
- de Blasi, F.S.; Myjak, J. Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach. Comptes Rendus Acad. Sci. Paris 1976, 283, 185–187. [Google Scholar]
- de Blasi, F.S.; Myjak, J.; Reich, S.; Zaslavski, A.J. Generic existence and approximation of fixed points for nonexpansive set-valued maps. Set-Valued Var. Anal. 2009, 17, 97–112. [Google Scholar] [CrossRef]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1984. [Google Scholar]
- Iyiola, O.S.; Shehu, Y. New convergence results for inertial Krasnoselskii’Mann iterations in Hilbert spaces with applications. Results Math. 2021, 76, 75. [Google Scholar] [CrossRef]
- Jachymski, J. Extensions of the Dugundji-Granas and Nadler’s theorems on the continuity of fixed points. Pure Appl. Funct. Anal. 2017, 2, 657–666. [Google Scholar]
- Kanzow, C.; Shehu, Y. Generalized Krasnoselskii’Mann-type iterations for nonexpansive mappings in Hilbert spaces. Comput. Optim. Appl. 2017, 67, 595–620. [Google Scholar] [CrossRef]
- Kassab, W.; Turcanu, T. Numerical reckoning fixed points of (E)-type mappings in modular vector spaces. Mathematics 2019, 7, 390. [Google Scholar] [CrossRef]
- Khamsi, M.A.; Kozlowski, W.M. Fixed Point Theory in Modular Function Spaces; Birkhäser/Springer: Cham, Switzerland, 2015. [Google Scholar]
- Khamsi, M.A.; Kozlowski, W.M.; Reich, S. Fixed point theory in modular function spaces. Nonlinear Anal. 1990, 14, 935–953. [Google Scholar] [CrossRef]
- Kirk, W.A. Contraction mappings and extensions. In Handbook of Metric Fixed Point Theory; Kluwer: Dordrecht, The Netherlands, 2001; pp. 1–34. [Google Scholar]
- Kozlowski, W.M. An introduction to fixed point theory in modular function spaces. In Topics in Fixed Point Theory; Springer: Cham, Switzerland, 2014; pp. 15–222. [Google Scholar]
- Kubota, R.; Takahashi, W.; Takeuchi, Y. Extensions of Browder’s demiclosedness principle and Reich’s lemma and their applications. Pure Appl. Func. Anal. 2016, 1, 63–84. [Google Scholar]
- Okeke, G.A.; Abbas, M.; de la Sen, M. Approximation of the fixed point of multivalued quasi-nonexpansive mappings via a faster iterative process with applications. Discret. Dyn. Nat. Soc. 2020, 2020, 8634050. [Google Scholar] [CrossRef]
- Okeke, G.A.; Ugwuogor, C.I. Iterative construction of the fixed point of Suzuki’s generalized nonexpansive mappings in Banach spaces. Fixed Point Theory 2022, 23, 633–652. [Google Scholar]
- Rakotch, E. A note on contractive mappings. Proc. Am. Math. Soc. 1962, 13, 459–465. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Generic aspects of metric fixed point theory. In Handbook of Metric Fixed Point Theory; Kluwer: Dordrecht, The Netherlands, 2001; pp. 557–575. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Genericity in Nonlinear Analysis; Developments in Mathematics; Springer: New York, NY, USA, 2014; Volume 34. [Google Scholar]
- Shehu, Y. Iterative approximations for zeros of sum of accretive operators in Banach spaces. J. Funct. Spaces 2016, 2016, 5973468. [Google Scholar] [CrossRef]
- Zaslavski, A.J. Approximate Solutions of Common Fixed Point Problems; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Zaslavski, A.J. Algorithms for Solving Common Fixed Point Problems; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Censor, Y.; Zaknoon, M. Algorithms and convergence results of projection methods for inconsistent feasibility problems: A review. Pure Appl. Func. Anal. 2018, 3, 565–586. [Google Scholar]
- Gibali, A. A new split inverse problem and an application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2017, 2, 243–258. [Google Scholar]
- Gibali, A.; Reich, S.; Zalas, R. Outer approximation methods for solving variational inequalities in Hilbert space. Optimization 2017, 66, 417–437. [Google Scholar] [CrossRef]
- Takahashi, W. The split common fixed point problem and the shrinking projection method for new nonlinear mappings in two Banach spaces. Pure Appl. Funct. Anal. 2017, 2, 685–699. [Google Scholar]
- Takahashi, W. A general iterative method for split common fixed point problems in Hilbert spaces and applications. Pure Appl. Funct. Anal. 2018, 3, 349–369. [Google Scholar]
- Tam, M.K. Algorithms based on unions of nonexpansive maps. Optim. Lett. 2018, 12, 1019–1027. [Google Scholar] [CrossRef]
- Bauschke, H.H.; Noll, D. On the local convergence of the Douglas-Rachford algorithm. Arch. Math. 2014, 102, 589–600. [Google Scholar] [CrossRef]
- Zaslavski, A.J. An algorithm based on unions of nonexpansive mappings in metric spaces. Symmetry 2022, 14, 1852. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaslavski, A.J. Convergence of Inexact Iterates of an Algorithm Based on Unions of Nonexpansive Mappings in Metric Spaces. Symmetry 2022, 14, 2563. https://doi.org/10.3390/sym14122563
Zaslavski AJ. Convergence of Inexact Iterates of an Algorithm Based on Unions of Nonexpansive Mappings in Metric Spaces. Symmetry. 2022; 14(12):2563. https://doi.org/10.3390/sym14122563
Chicago/Turabian StyleZaslavski, Alexander J. 2022. "Convergence of Inexact Iterates of an Algorithm Based on Unions of Nonexpansive Mappings in Metric Spaces" Symmetry 14, no. 12: 2563. https://doi.org/10.3390/sym14122563
APA StyleZaslavski, A. J. (2022). Convergence of Inexact Iterates of an Algorithm Based on Unions of Nonexpansive Mappings in Metric Spaces. Symmetry, 14(12), 2563. https://doi.org/10.3390/sym14122563