Some Applications of Affine in Velocities Lagrangians in Two-Dimensional Systems
Abstract
:1. Introduction
2. Affine Lagrangians on
3. Hamiltonian Formulation
4. The Inverse Problem for First-Order Systems
4.1. Theory of the Jacobi Multipliers
4.2. The Inverse Problem on
5. Applications in Mechanical and Biological Systems
5.1. Mechanical Systems
5.2. Biological Systems
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarlet, W.; Thompson, G.; Prince, G.E. The inverse problem of the calculus of variations: The use of geometrical calculus in Douglas’s analysis. Trans. Am. Math. Soc. 2002, 354, 2897–2919. [Google Scholar] [CrossRef]
- Crampin, M. On the differential geometry of the Euler-Lagrange equations and the inverse problem in Lagrangian dynamics. J. Phys. A Math. Gen. 1981, 14, 2567–2575. [Google Scholar] [CrossRef]
- Sarlet, W. The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangan dynamics. J. Phys. A Math. Gen. 1985, 15, 1503–1517. [Google Scholar] [CrossRef]
- Douglas, J. Solution of the inverse problem of the calculus of variations. Trans. Am. Math. Soc. 1941, 50, 71–128. [Google Scholar] [CrossRef]
- Hojman, S.; Urrutia, L.F. On the inverse problem of the calculus of variations. J. Math. Phys. 1981, 22, 1896–1903. [Google Scholar] [CrossRef]
- Cariñena, J.F.; Rañada, M.F.; Santander, M. Lagrangian formalism for nonlinear second-order Riccati systems: One-dimensional integrability and two-dimensional superintegrability. J. Math. Phys. 2005, 46, 062703. [Google Scholar] [CrossRef] [Green Version]
- Musielak, Z.E. Standard and non-standad Lagrangians for dissipative dynamical systems with variable coefficients. J. Phys. A Math. Theor. 2008, 41, 055205. [Google Scholar] [CrossRef] [Green Version]
- Cieśliński, J.L.; Nikiciuk, T. A direct approach to the construction of standard and non-standard Lagrangians for dissipative-like dynamical systems with variable coefficients. J. Phys. A Math. Theor. 2010, 43, 175205. [Google Scholar] [CrossRef]
- Saha, A.; Talukdar, B. On the non-standard Lagrangian equations. arXiv 2013, arXiv:1301.2667. [Google Scholar]
- El-Nabulsi, A.R. Nonlinear dynamics with non-standard Lagrangians. Qual. Theory Dyn. Syst. 2013, 12, 273–291. [Google Scholar] [CrossRef]
- Cariñena, J.F.; Fernández-Núñez, J.; Rañada, M.F. Singular Lagrangians affine in velocities. J. Phys. A Math. Gen. 2003, 36, 3789–3807. [Google Scholar] [CrossRef]
- Cariñena, J.F.; López, C.; Rañada, M.F. Geometric Lagrangian approach to first-order systems and applications. J. Math. Phys. 1988, 29, 1134–1142. [Google Scholar] [CrossRef]
- Jurkowski, J. The inverse problem for a linear vector field in thermodynamics. Rep. Math. Phys. 1998, 41, 351–360. [Google Scholar] [CrossRef]
- Newman, E.; Bergmann, P.G. Lagrangians linear in the ‘velocities’. Phys. Rev. 1955, 99, 587–592. [Google Scholar] [CrossRef]
- Faddeev, L.; Jackiw, R. Hamiltonian reduction of unconstrained and constrained systems. Phys. Rev. Lett. 1988, 60, 1692–1694. [Google Scholar] [CrossRef] [PubMed]
- Kulshreshta, D.S.; Müller-Kirsten, H.J.W. Quantization of systems with constraints: The Faddeev–Jackiw method versus Dirac’s method applied to superfields. Phys. Rev. 1991, D43, 3376–3378. [Google Scholar] [CrossRef] [PubMed]
- Barcelos-Neto, J.; Wotzasek, C. Faddeev-Jackiw quantization and constraints. Int. J. Mod. Phys. A 1992, 7, 4981–5003. [Google Scholar] [CrossRef]
- Fernández-Núñez, J. Lagrangian structure of the two-dimensional Lotka–Volterra system. Int. J. Theor. Phys. 1998, 37, 2457–2462. [Google Scholar] [CrossRef]
- Trubatch, S.L.; Franco, A. Canonical Procedure for Population Dynamics. J. Theor. Biol. 1974, 48, 299–324. [Google Scholar] [CrossRef] [PubMed]
- Cariñena, J.F.; Ibort, A.; Marmo, G.; Morandi, G. Geometry from Dynamics: Classical and Quantum; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Nucci, M.C.; Tamizhmani, K.M. Lagrangians for dissipative nonlinear oscillators: The method of the Jacobi multiplier. J. Nonlinear Math. Phys. 2010, 17, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Sinelshchikov, D.I.; Kudryashov, N.A. On the Jacobi last multipliers and Lagrangians for a family of Liénard-type equations. Appl. Math. Comput. 2017, 307, 257–264. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Pandey, S.N.; Chandrasekar, V.K.; Senthilvelan, M.; Lakshmanan, M. The inverse problem of a mixed Liénard-type nonlinear oscillator equation from symmetry perspective. Acta Mech. 2016, 227, 2039–2051. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekar, V.K.; Senthilvelan, M.; Lakshmanan, M. On the complete integrability and linearization of nonlinear ordinary differential equations. II. Third order equations. Proc. R. Soc. A Math. Phys. Eng. Sci. 2006, 462, 1831–1852. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekar, V.K.; Senthilvelan, M.; Lakshmanan, M. On the complete integrability and linearization of nonlinear ordinary differential equations. III. Coupled first-order equations. Proc. R. Soc. A Math. Phys. Eng. Sci. 2009, 465, 609–629. [Google Scholar] [CrossRef]
- Chandrasekar, V.K.; Senthilvelan, M.; Lakshmanan, M. On the complete integrability and linearization of nonlinear ordinary differential equations. IV. Coupled second-order differential equations. Proc. R. Soc. A Math. Phys. Eng. Sci. 2009, 465, 585–608. [Google Scholar] [CrossRef]
- Chandrasekar, V.K.; Senthilvelan, M.; Lakshmanan, M. On the complete integrability and linearization of nonlinear ordinary differential equations. V. Linearization of coupled second-order equations. Proc. R. Soc. A Math. Phys. Eng. Sci. 2009, 465, 2369–2389. [Google Scholar] [CrossRef]
- Chandrasekar, V.K.; Senthilvelan, M.; Lakshmanan, M. On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations. Proc. R. Soc. A Math. Phys. Eng. Sci. 2005, 461, 2451–2476. [Google Scholar] [CrossRef] [Green Version]
- Havas, P. The connection between conservation laws and invariance groups: Folklore, fiction, and facts. Acta Phys. Austriaca 1973, 38, 145–167. [Google Scholar]
- Santilli, R.M. Foundations of Theoretical Mechanics II; Springer: New York, NY, USA, 1983. [Google Scholar]
- Zhang, Y. Theory of Generalized Canonical Transformations for Birkhoff Systems. Adv. Math. Phys. 2020, 2020, 9482356. [Google Scholar] [CrossRef]
- Birkhoff, G.D. Dynamical Systems; American Mathematical Society: Providence, RI, USA, 1927. [Google Scholar]
- Cariñena, J.F.; Fernández-Núñez, J. Geometric theory of time-dependent singular Lagrangians. Fortschr. Phys./Prog. Phys. 1993, 41, 517–552. [Google Scholar]
- Abraham, R.; Marsden, J.E. Foundations of Mechanics, 2nd ed.; Benjamin: Reading, MA, USA, 1978. [Google Scholar]
- Crampin, M.; Pirani, F.A.E. Applicable Differential Geometry; University Press: Cambridge, UK, 1986. [Google Scholar]
- Jacobi, C.G.J. Jacobi’s Lectures on Dynamics, 2nd ed.; Clebsch, A., Ed.; Hindustan Book Agency: New Delhi, India, 2009. [Google Scholar]
- Cariñena, J.F.; Santos, P. Jacobi multipliers and Hamel’s formalism. J. Phys. A Math. Theor. 2021, 54, 225203. [Google Scholar] [CrossRef]
- Nucci, M.C. Jacobi Last Multiplier and Lie Symmetries: A Novel Application of an Old Relationship. J. Nonlinear Math. Phys. 2005, 12, 284–304. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Liu, Q.; Su, H. Generalized Hamiltonian forms of dissipative mechanical systems via a unified approach. J. Geom. Phys. 2021, 160, 103976. [Google Scholar] [CrossRef]
- Crasmareanu, M. Last multipliers as autonomous solutions of the Liouville equation of transport. Houst. J. Math. 2008, 34, 455–466. [Google Scholar]
- Algaba, A.; Fuentes, N.; Gamero, E.; Garcia, C. On the Integrability Problem for the Hopf-Zero singularity and its relation with the inverse Jacobi multiplier. Appl. Math. Comput. 2021, 405, 126241. [Google Scholar] [CrossRef]
- Aziz, W.; Amen, A.; Pantazi, C. Integrability and linearizability of a family of three-dimensional quadratic systems. Dyn. Syst. 2021, 36, 317–331. [Google Scholar] [CrossRef]
- Cariñena, J.F.; Fernández-Núñez, J. Jacobi multipliers in integrability and the inverse problem of mechanics. Symmetry 2021, 13, 1413. [Google Scholar] [CrossRef]
- Cariñena, J.F.; Rañada, M.F. Jacobi multipliers and Hojman symmetry. Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150166. [Google Scholar] [CrossRef]
- Choudhury, A.G.; Guha, P.; Khanra, B. On the Jacobi Last Multiplier, integrating factors and the Lagrangian formulation of differential equations of the Painlevé–Gambier classification. J. Math. Anal. Appl. 2009, 360, 651–664. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, A.G.; Guha, P. Application of Jacobi’s last multiplier for construction of Hamiltonians of certain biological systems. Cent. Eur. J. Phys. 2012, 10, 398–404. [Google Scholar] [CrossRef] [Green Version]
- Ghose-Choudhury, A.; Guha, P. Isochronicity Conditions and Lagrangian Formulations of the Hirota Type Oscillator Equations. Qual. Theory Dyn. Syst. 2022, 21, 144. [Google Scholar] [CrossRef]
- Guha, P.; Ghose-Choudhury, A. The role of the Jacobi last multiplier and isochronous systems. Pramana 2011, 77, 917–927. [Google Scholar] [CrossRef]
- Guha, P.; Ghose-Choudhury, A. The Jacobi Last Multiplier and isochronicity of Liénard equation. Rev. Math. Phys. 2013, 25, 1330009. [Google Scholar] [CrossRef]
- Guha, P.; Ghose-Choudhury, A. Quantum Liénard II equation and Jacobi last multiplier. Surv. Math. Appl. 2015, 10, 1–21. [Google Scholar]
- Nucci, M.C.; Leach, P.G.L. The Jacobi’s Last Multiplier and its applications in mechanics. Phys. Scr. 2008, 78, 065011. [Google Scholar] [CrossRef]
- García, I.A.; Giné, J.; Llibre, J.; Maza, S. Vanishing set of inverse Jacobi multipliers and attractor/repeller sets. Chaos 2021, 31, 013113. [Google Scholar] [CrossRef] [PubMed]
- Cariñena, J.F.; de Lucas, J.; Rañada, M.F. Jacobi multipliers, non-local symmetries, and nonlinear oscillators. J. Math. Phys. 2015, 56, 063505. [Google Scholar] [CrossRef] [Green Version]
- Cariñena, J.F.; Ibort, L.A. Non-Noether constants of motion. J. Phys. A Math. Gen. 1983, 16, 1. [Google Scholar] [CrossRef]
- Mohanasubha, R.; Chandrasekar, V.K.; Senthilvelan, M.; Lakshmanan, M. Interconnections between various analytic approaches applicable to third-order nonlinear differential equations. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 720. [Google Scholar]
- Mohanasubha, R.; Chandrasekar, V.K.; Senthilvelan, M.; Lakshmanan, M. Interplay of symmetries and other integrability quantifiers infinite-dimensional integrable nonlineardynamical systems. Proc. R. Soc. A Math. Phys. Eng. Sci. 2016, 472, 847. [Google Scholar]
- Mohanasubha, R.; Chandrasekar, V.K.; Senthilvelan, M.; Lakshmanan, M. Interconnections among analytical methods for two-coupled first-order integrable systems. Indian Accad. Sci. Conf. Series 2019, 2, 1. [Google Scholar]
- Mohanasubha, R.; Chandrasekar, V.K.; Senthilvelan, M.; Lakshmanan, M. Interplay of symmetries, null forms, Darboux polynomials, integrating factors and Jacobi multipliers in integrable second-order differential equations. Procs. Royal. Soc. A 2014, 470, 20130656. [Google Scholar] [CrossRef] [Green Version]
- Garai, S.; Ghose-Choudhury, A.; Guha, P. On a geometric description of time-dependent singular Lagrangians with applications to biological systems. Int. J. Geom. Methods Geom. Phys. 2022, 19, 2250181. [Google Scholar] [CrossRef]
- Cherniha, R.; Davydovych, V. Construction and application of exact solutions of the diffusive Lotka–Volterra system: A review and new results. Commun. Nonlinear Sci. Numer. Simul. 2022, 113, 106579. [Google Scholar] [CrossRef]
- Volterra, V. Leçons sur la Théorie Mathématique de la Lutte pour la Vie; Gauthier Villars: Paris, France, 1931. [Google Scholar]
- Perlick, V. The Hamiltonization problem from a global viewpoint. J. Math. Phys. 1992, 33, 599–606. [Google Scholar] [CrossRef]
- del Castillo, G.F.T.; Rubalcava, G.I. The Hamiltonian description of a second-order ODE. J. Phys. A Math. Theor. 2009, 42, 265202. [Google Scholar] [CrossRef]
- del Castillo, G.F.T. Hamiltonians and Lagrangians of non-autonomous one-dimensional mechanical systems. Rev. Mex. Fis. 2006, 52, 429–432. [Google Scholar]
- Cariñena, J.F.; Ibort, L.A. Geometric Theory of the Equivalence of Lagrangians for Constrained Systems. J. Phys. A Math. Gen. 1985, 18, 3335–3341. [Google Scholar] [CrossRef]
- Cariñena, J.F.; de Lucas, J.; Rañada, M.F. A geometric approach to integrability of Abel differential equations. Int. J. Theor. Phys. 2011, 50, 2114–2124. [Google Scholar] [CrossRef]
- Cariñena, J.F.; Guha, P.; Rañada, M.F. A geometric approach to higher-order Riccati chain: Darboux polynomials and constants of the motion. J. Phys. Conf. Ser. 2009, 175, 012009. [Google Scholar] [CrossRef] [Green Version]
- Bateman, H. On dissipative systems and related variational principles. Phys. Rev. 1931, 38, 815–819. [Google Scholar] [CrossRef]
- Caldirola, P. Forze non conservative nella meccanica quantistica. Nuovo Cim. 1941, 18, 393–400. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Principles of Stellar Dynamics; Univ. Chicago Press: Chicago, IL, USA, 1942. [Google Scholar]
- Buchdahl, H.A. A relativistic fluid sphere resembling the Emden polytrope of index 5. Astrophys. J. 1964, 140, 1512–1515. [Google Scholar] [CrossRef]
- Jones, D.S.; Plank, M.J.; Sleeman, B.D. Differential Equations and Mathematical Biology; CRC Press: Boca Raton, FL, USA, 2010; Chapter 9. [Google Scholar]
- Mei, F.X.; Gang, T.Q.; Xie, J.F. A symmetry and a conserved quantity for the Birkhoff system. Chin. Phys. 2006, 15, 1678–1681. [Google Scholar]
- Hojman, S.A.; Shepley, L.C. No Lagrangian? No quantization! J. Math. Phys. 1971, 32, 142–146. [Google Scholar] [CrossRef]
- Duarte, P.; Fernandes, R.L.; Oliva, W.M. Dynamics of the Attractor in the Lotka–Volterra Equations. J. Diff. Equ. 1998, 149, 143–189. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cariñena, J.F.; Fernández-Núñez, J. Some Applications of Affine in Velocities Lagrangians in Two-Dimensional Systems. Symmetry 2022, 14, 2520. https://doi.org/10.3390/sym14122520
Cariñena JF, Fernández-Núñez J. Some Applications of Affine in Velocities Lagrangians in Two-Dimensional Systems. Symmetry. 2022; 14(12):2520. https://doi.org/10.3390/sym14122520
Chicago/Turabian StyleCariñena, José F., and José Fernández-Núñez. 2022. "Some Applications of Affine in Velocities Lagrangians in Two-Dimensional Systems" Symmetry 14, no. 12: 2520. https://doi.org/10.3390/sym14122520
APA StyleCariñena, J. F., & Fernández-Núñez, J. (2022). Some Applications of Affine in Velocities Lagrangians in Two-Dimensional Systems. Symmetry, 14(12), 2520. https://doi.org/10.3390/sym14122520