New Formulation to Synthetize Semiconductor Bi2S3 Thin Films Using Chemical Bath Deposition for Optoelectronic Applications
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García, M.H.; Nair, M.T.S.; Nair, P.K. All-chemically deposited Bi2S3/PbS solar cells. Thin Solid Films 2011, 519, 7364–7368. [Google Scholar] [CrossRef]
- Liufu, S.C.; Chen, L.D.; Yao, Q.; Wang, C.F. Bismuth Sulfide Thin Films with Low Resistivity on Self-Assembled Monolayers. J. Phys. Chem. B 2006, 47, 24054–24061. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.K.; Nair, M.T.S.; Garcia, V.M.; García, O.L.; Arenas, O.L.; Piña, Y.; Castillo, A.; Ayala, I.T.; Gomezdaza, O.; Sánchez, A.; et al. Semiconductor thin films by chemical bath deposition for solar energy related applications. Sol. Energy Mater. Sol. Cells 1998, 52, 313–344. [Google Scholar] [CrossRef]
- Nie, G.; Lu, X.; Lei, J.; Yang, L.; Wang, C. Facile and controlled synthesis of bismuth sulfide nanorods-reduced graphene oxide composites with enhanced supercapacitor performance. Electrochim. Acta. 2015, 154, 24–30. [Google Scholar] [CrossRef]
- Miller, N.C.; Bernechea, M. Research Update: Bismuth based materials for photovoltaics. Appl. Mater. 2018, 6, 084503. [Google Scholar]
- Herner, S.B. Chapter 13—Application of Thin Films in Semiconductor Memories. In Handbook of Thin Film Deposition, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 417–437. [Google Scholar]
- Zhu, Q.; Gao, F.; Yang, Y.; Zhang, B.; Wang, W. Electrochemical preparation of polyaniline capped Bi2S3 nanocomposite and its application in impedimetric DNA biosensor. Sens. Actuators B. Chem. 2015, 207, 819–826. [Google Scholar] [CrossRef]
- Fernandes, A.M.; Abdalhai, M.H.; Ji, J.; Xi, B.W.; Xie, J.; Sun, J.; Noeline, R.; Lee, B.H.; Sun, X. Development of highly sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Biosens. Bioelectron. 2015, 63, 399–406. [Google Scholar] [CrossRef]
- Kinsella, M.; Jimenez, R.E.; Karmali, P.P.; Rush, A.M.; Kotamraju, V.R.; Gianneschi, N.C.; Ruoslathi, E.; Stupack, D.; Sailor, M.J. X-ray computed tomography imaging of breast cancer by using targeted peptide-labeled bismuth sulfide nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 12308–12311. [Google Scholar] [CrossRef]
- Qu, C.; Zhou, S.; Li, G.; Wang, C.; Synders, R.; Bittencourt, C.; Li, W. Bi2S3/rGO Composite Based Electrochemical Sensor for. Ascorbic Acid Detection. Chemosensors 2021, 9, 190–205. [Google Scholar] [CrossRef]
- Gao, C.; Shen, H.; Sun, L.; Shen, Z. Chemical bath deposition o Bi2S3 films by a novel deposition system. Appl. Surf. Sci. 2011, 257, 7529–7533. [Google Scholar] [CrossRef]
- Ali, N.; Hussain, A.; Ahmed, R.; Omar, M.F.B.; Sultan, M.; Fu, Y.Q. Crystallized InBiS3 thin films with enhanced optoelectronic properties. Appl. Surf. Sci. 2018, 436, 293–301. [Google Scholar] [CrossRef]
- Munawar, K.; Mansoor, M.A.; Basirun, W.J.; Misran, M.; Huang, N.M.; Mazhar, M. Single step fabrication of CuO-MnO-2TiO2 composite thin films with improved photoelectrochemical response. RSC Adv. 2017, 7, 15885–15893. [Google Scholar] [CrossRef]
- Zamani, M.; Jamali-Sheini, F.; Cheraghizade, M. Visible-range and self-powered bilayer p-Si/n-Bi2S3 heterojunction photodetector: The effect of Au buffer layer on the optoelectronics performance. J. Alloy. Compd. 2022, 905, 164119–164149. [Google Scholar] [CrossRef]
- Ho, S.M.; Nilai, P.; Sembilan, N. Review Article Chalcogenide Thin Films Prepared using Chemical Bath Deposition Method: Review. Res. J. Appl. Sci. Eng. Technol. 2015, 11, 1058–1065. [Google Scholar] [CrossRef]
- Pineda, E.; Nicho, M.E.; Nair, P.K.; Hu, H. Optoelectronic properties of chemically deposited Bi2S3 thin films and the photovoltaic performance of Bi2S3/P3OT solar cells. Sol. Energy 2012, 86, 1017–1022. [Google Scholar] [CrossRef]
- Luo, Y.; Wen, J.; Zhang, J. Introductory Chapter: BISMUTH-Related Optoelectronic Materials. In Bismuth-Fundamentals and Optoelectronic Applications, 1st ed.; Intechopen: London, UK, 2020. [Google Scholar]
- Toudert, J.; Serna, R.; Deeb, C.; Rebollar, E. Optical properties of bismuth nanostructures towards the ultrathin film regime. Opt. Mater. Express 2019, 9, 2924–2936. [Google Scholar] [CrossRef]
- Wang, F.; Yang, S.; Wu, J.; Hu, X.; Li, Y.; Li, H.; Liu, X.; Luo, J.; Zhai, T. Emerging two-dimensional bismuth oxychalcogenides for electronics and optoelectronics. InfoMat 2021, 3, 1251–1271. [Google Scholar] [CrossRef]
- Pandey, A.; Yadav, R.; Kaur, M.; Singh, P.; Gupta, A.; Husale, S. High performing flexible optoelectronic devices using thin films of topological insulator. Sci. Rep. 2021, 11, 832. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.L.; Chanshetti, U.B. Refractive Index and Density Properties of Bismuth Sulfide (Bi2S3) Glass Nanocomposite. Int. J. Mater. Sci. 2017, 12, 1–7. [Google Scholar]
- Wang, Y.; Chen, J.; Jiang, L.; Sun, K.; Liu, F.; Lai, Y. Photoelectrochemical properties of Bi2S3 thin films deposited by successive ionic layer adsorption and reaction (SILAR) method. J. Alloy. Compd. 2016, 686, 684–692. [Google Scholar] [CrossRef]
- Fazal, T.; Ismail, B.; Shah, M.; Iqbal, S.; Elkaeed, E.B.; Awwad, N.S.; Ibrahium, H.A. Simplified Route for Deposition of Binary and Ternary Bismuth Sulphide Thin Films for Solar Cell Applications. Sustainability 2022, 14, 4603–4614. [Google Scholar] [CrossRef]
- Ahire, R.R.; Sharma, R.P. Photoelectrochemical characterization of Bi2S3 thin films deposited by modified chemical bath deposition. Indian J. Eng. Mater. Sci. 2006, 13, 140–144. [Google Scholar]
- Hodes, G. Chemical Solution Deposition of Semiconductor Films, 1st ed.; Marcel Dekker: New York, NY, USA, 2002. [Google Scholar]
- Hussain, A.; Ahmed, R.; Ali, N.; AbdEl-Salam, N.M.; Deraman, K.; Fu, Y.Q. Synthesis and characterization of thermally evaporated copper bismuth sulphide thin films. Surf. Coat. Technol. 2017, 320, 404–408. [Google Scholar] [CrossRef]
- Nair, M.T.S.; Nair, P.K. Photoconductive bismuth sulphide thin films by chemical deposition. Semicond. Sci. Technol. 1990, 5, 1225. [Google Scholar] [CrossRef]
- Mane, R.S.; Sankapal, B.R.; Lokhande, C.D. Photoelectrochemical (PEC) characterization of chemically deposited Bi2S3 thin films from non-aqueous medium. Mater. Chem. Phys. 1999, 60, 158–162. [Google Scholar] [CrossRef]
- Shah, M.P.; Holmberg, S.H.; Kostylev, S.A. Reversible switching in thin amorphous chalcogenide films—Electronic effects. Phys. Rev. Lett. 1973, 31, 542. [Google Scholar] [CrossRef]
- Subramania, S.; Balaji, M.; Chithralekha, P.; Sanjeev, G.; Subramanian, E.; Pathinettam, D. Electron beam induced modifications of bismuth sulphide (Bi2S3) thin films: Structural and optical properties. Radiat. Phys. Chem. 2010, 79, 1127–1131. [Google Scholar] [CrossRef]
- Shein, H.; Shao, Z.; Zhao, Q.; Jin, M.; Shen, C.; Deng, M.; Zhong, G.; Huang, F.; Zhu, H.; Chen, F.; et al. Facile synthesis of novel three-dimensional Bi2S3 nanocrystals capped by polyvinyl pyrrolidone to enhance photocatalytic properties under visible light. J. Colloid Interface Sci. 2020, 573, 115–122. [Google Scholar] [CrossRef]
- Onwudiwe, D.C.; Nkwe, V.M. Morphological variations in Bi2S3 nanoparticles synthesized by using a single source precursor. Heliyon 2020, 7, e04505. [Google Scholar] [CrossRef]
- Liu, K.; Shen, Z.R.; Li, Y.; Han, S.D.; Hu, T.L.; Zhang, D.S.; Bu, X.H.; Ruan, W.J. Solvent induced rapid modulation of micro/nano structures of metal carboxylates coordination polymers: Mechanism and morphology dependent magnetism. Sci. Rep. 2014, 4, 6023–6029. [Google Scholar] [CrossRef]
- Yu, I.; Isobe, T.; Seena, M. Preparation and properties of CdS thin films comprising nano-particles by a solution growth technique. Mater. Res. Bull. 1995, 30, 975–980. [Google Scholar] [CrossRef]
- Wagner, C.D.; Naumkin, A.V.; Kraut-Vass, A.; Allison, J.W.; Powell, C.J.; Rumble, J.R. NIST Standard Reference Database 20; Version 3.4; Available online: http:/srdata.nist.gov/xps/ (accessed on 10 December 2021).
- Ahire, R.R.; Sankapal, B.R.; Lokhande, C.D. Preparation and characterization of Bi2S3 thin films using modified chemical bath deposition method. Mater. Res. Bull. 2001, 36, 199–210. [Google Scholar] [CrossRef]
- Hussain, A.; Begum, A.; Rahman, A. Effects of annealing on nanocrystalline Bi2S3 thin films prepared by chemical bath deposition. Mater. Sci. Semicond. Process. 2014, 2, 74–81. [Google Scholar] [CrossRef]
- Moreno-García, H.; Messina, S.; Calixto-Rodriguez, M.; Martínez, H. Physical properties of chemically deposited Bi2S3 thin films using two post-deposition treatments. Appl. Surf. Sci. 2014, 311, 729–733. [Google Scholar] [CrossRef]
Sm,n~Total Deposition Time (Minutes) | m, Represents the Number of Layers | ||
---|---|---|---|
n, represents the deposition time | S1,70~70 | S2,70~140 | S3,70~210 |
S1,80~80 | S2,80~160 | S3,80~240 | |
S1,90~90 | S2,90~180 | S3,90~270 | |
S1,100~100 | S2,100~200 | S3,100~300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrillo-Castillo, A.; Rivas-Valles, B.G.; Castillo, S.J.; Ramirez, M.M.; Luque-Morales, P.A. New Formulation to Synthetize Semiconductor Bi2S3 Thin Films Using Chemical Bath Deposition for Optoelectronic Applications. Symmetry 2022, 14, 2487. https://doi.org/10.3390/sym14122487
Carrillo-Castillo A, Rivas-Valles BG, Castillo SJ, Ramirez MM, Luque-Morales PA. New Formulation to Synthetize Semiconductor Bi2S3 Thin Films Using Chemical Bath Deposition for Optoelectronic Applications. Symmetry. 2022; 14(12):2487. https://doi.org/10.3390/sym14122487
Chicago/Turabian StyleCarrillo-Castillo, Amanda, Brayan G. Rivas-Valles, Santos Jesus Castillo, Marcela Mireles Ramirez, and Priscy Alfredo Luque-Morales. 2022. "New Formulation to Synthetize Semiconductor Bi2S3 Thin Films Using Chemical Bath Deposition for Optoelectronic Applications" Symmetry 14, no. 12: 2487. https://doi.org/10.3390/sym14122487
APA StyleCarrillo-Castillo, A., Rivas-Valles, B. G., Castillo, S. J., Ramirez, M. M., & Luque-Morales, P. A. (2022). New Formulation to Synthetize Semiconductor Bi2S3 Thin Films Using Chemical Bath Deposition for Optoelectronic Applications. Symmetry, 14(12), 2487. https://doi.org/10.3390/sym14122487