Some Existence and Uniqueness Results for a Class of Fractional Stochastic Differential Equations
Abstract
:1. Introduction
- To investigate the existence and uniqueness of the solution of CSFDE via BFPT.
- To investigate the HUS of CSFDE by using the stochastic calculus techniques.
2. Basic Notions
3. Existence and Uniqueness of Solutions
4. Hyers–Ulam Stability
5. Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Baleanu, D.; Machado, J.A.; Luo, A.C. Fractional Dynamics and Control; Springer Science and Business Media: New York, NY, USA, 2011. [Google Scholar]
- Koeller, R. Applications of fractional calculus to the theory of viscoelasticity. ASME J. Appl. Mech. 1984, 51, 299–307. [Google Scholar] [CrossRef]
- Li, C.P.; Zeng, F.H. Numerical Methods for Fractional Calculus; Chapman and Hall/CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Oussaeif, T.E.; Antara, B.; Ouannas, A.; Batiha, I.M.; Saad, K.M.; Jahanshahi, H.; Aljuaid, A.M.; Aly, A.A. Existence and Uniqueness of the Solution for an Inverse Problem of a Fractional Diffusion Equation with Integral Condition. J. Funct. Spaces 2020, 2020, 7667370. [Google Scholar] [CrossRef]
- Batiha, I.M.; Ouannas, A.; Albadarneh, R.; Al-Nana, A.A.; Momani, S. Existence and uniqueness of solutions for generalized Sturm–Liouville and Langevin equations via Caputo–Hadamard fractional-order operator. Eng. Comput. 2022, 39, 2581–2603. [Google Scholar] [CrossRef]
- Chen, L.; Chai, Y.; Wu, R.C.; Ma, T.D.; Zha, H.Z. Dynamic analysis of a class of fractional-order neural networks with delay. Neurocomputing 2013, 111, 190–194. [Google Scholar] [CrossRef]
- Li, Y.L.; Pan, C.; Meng, X.; Ding, Y.Q.; Chen, X.H. A method of approximate fractional order differentiation with noise immunity. Chemom. Intell. Lab. Syst. 2015, 144, 31–38. [Google Scholar] [CrossRef]
- Li, C.P.; Tao, C.X. On the fractional Adams method. Comput. Math. Appl. 2009, 58, 1573–1588. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.; Malinowska, A.B.; Monteiro, M.T.T. Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications. Math. Methods Appl. Sci. 2018, 41, 336–352. [Google Scholar] [CrossRef] [Green Version]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 142, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Abdo, M.S.; Panchal, S.K.; Saeed, A.M. Fractional boundary value problem with ψ-Caputo fractional derivative. Proc. Indian Acad. Sci. Math. Sci. 2019, 129, 157–169. [Google Scholar] [CrossRef]
- Almeida, R. Further properties of Osler’s generalized fractional integrals and derivatives with respect to another function. Rocky Mt. J. Math. 2019, 49, 2459–2493. [Google Scholar] [CrossRef]
- Almeida, R.; Jleli, M.; Samet, B. A numerical study of fractional relaxation-oscillation equations involving ψ-Caputo fractional derivative. Rev. R. Acad. Cienc. Exactas Fís Nat. Ser. Mat. 2019, 113, 1873–1891. [Google Scholar] [CrossRef]
- Baitiche, Z.; Derbazi, C.; Matar, M.M. Ulam stability for nonlinear-Langevin fractional differential equations involving two fractional orders in the ψ-Caputo sense. Appl. Anal. 2022, 101, 4866–4881. [Google Scholar] [CrossRef]
- Derbazi, C.; Baitiche, Z.; Benchohra, M.; Cabada, A. Initial value problem for nonlinear fractional differential equations with ψ-Caputo derivative via monotone iterative technique. Axioms 2020, 9, 57. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; Lazreg, J.E.; Zhou, Y. A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability. Chaos Solitons Fractals 2017, 102, 47–71. [Google Scholar] [CrossRef]
- Guo, Y.; Shu, X.B.; Li, Y.; Xu, F. The existence and Hyers–Ulam stability of solution for an impulsive Riemann–Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1 < β < 2. Bound. Value Probl. 2019, 59, 1–11. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Chen, M.; Shu, X.B.; Xu, F. The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm. Stoch. Anal. Appl. 2021, 39, 643–666. [Google Scholar] [CrossRef]
- Li, S.; Shu, L.; Shu, X.B.; Xu, F. Existence and Hyers-Ulam stability of random impulsive stochastic functional differential equations with finite delays. Stochastics 2019, 91, 857–872. [Google Scholar] [CrossRef]
- Long, H.V.; Son, N.T.K.; Tam, H.T.T.; Yao, J.C. Ulam stability for fractional partial integrodi differential equation with uncertainty. Acta Math. Vietnam. 2017, 42, 675–700. [Google Scholar] [CrossRef]
- Derbazi, C.; Baitiche, Z.; Benchohra, M.; N’guérékata, G. Existence, uniqueness, approximation of solutions and Ealpha-Ulam stability results for a class of nonlinear fractional differential equations involving psi-Caputo derivative with initial conditions. Math. Moravica 2021, 25, 1–30. [Google Scholar] [CrossRef]
- Boutiara, A.; Abdo, M.S.; Benbachir, M. Existence results for ψ-Caputo fractional neutral functional integro-differential equations with finite delay. Turk. J. Math. 2020, 44, 2380–2401. [Google Scholar] [CrossRef]
- Derbazi, C.; Baitiche, Z. Uniqueness and Ulam–Hyers–Mittag–Leffler stability results for the delayed fractional multiterm differential equation involving the ϕ-Caputo fractional derivative. Rocky Mt. J. Math. 2020, 52, 887–897. [Google Scholar]
- Ahmadova, A.; Mahmudov, N.I. Ulam-Hyers stability of Caputo type fractional stochastic neutral differential equations. Stat. Probab. Lett. 2021, 168, 108949. [Google Scholar] [CrossRef]
- Ben Makhlouf, A.; Mchiri, L. Some results on the study of Caputo-Hadamard fractional stochastic differential equations. Chaos Solitons Fractals 2022, 155, 111757. [Google Scholar] [CrossRef]
- Doan, T.S.; Huong, P.T.; Kloeden, P.; Tuan, H.T. Asymptotic separation between solutions of Caputo fractional stochastic differential equations. Stoch. Anal. Appl. 2018, 36, 1–11. [Google Scholar]
- Diaz, J.B.; Margolis, B. A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Vanterler da Sousa, J.; Capelas de Oliveira, E. A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator. arXiv 2017, arXiv:1709.03634. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kahouli, O.; Ben Makhlouf, A.; Mchiri, L.; Kumar, P.; Ben Ali, N.; Aloui, A. Some Existence and Uniqueness Results for a Class of Fractional Stochastic Differential Equations. Symmetry 2022, 14, 2336. https://doi.org/10.3390/sym14112336
Kahouli O, Ben Makhlouf A, Mchiri L, Kumar P, Ben Ali N, Aloui A. Some Existence and Uniqueness Results for a Class of Fractional Stochastic Differential Equations. Symmetry. 2022; 14(11):2336. https://doi.org/10.3390/sym14112336
Chicago/Turabian StyleKahouli, Omar, Abdellatif Ben Makhlouf, Lassaad Mchiri, Pushpendra Kumar, Naim Ben Ali, and Ali Aloui. 2022. "Some Existence and Uniqueness Results for a Class of Fractional Stochastic Differential Equations" Symmetry 14, no. 11: 2336. https://doi.org/10.3390/sym14112336
APA StyleKahouli, O., Ben Makhlouf, A., Mchiri, L., Kumar, P., Ben Ali, N., & Aloui, A. (2022). Some Existence and Uniqueness Results for a Class of Fractional Stochastic Differential Equations. Symmetry, 14(11), 2336. https://doi.org/10.3390/sym14112336