Rogue Waves Generator and Chaotic and Fractal Behavior of the Maccari System with a Resonant Parametric Forcing
Abstract
1. Introduction
2. The Approximate Solution
3. The Model System
4. Solving the Model System
5. Chaotic and Fractal Solutions
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ablowitz, M.J.; Clarkson, P.A. Nonlinear Evolution Equations and Inverse Scattering; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Wazwaz, A.M. Partial Differential Equations and Solitary Waves Theory; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Chen, S.H.; Baronio, F.; Soto-Crespo, J.M.; Grelu, P.; Mihalache, D. Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems. J. Phys. A Math. Theor. 2017, 50, 463001. [Google Scholar] [CrossRef]
- Ling, L.M.; Zhao, L.C.; Yang, Z.Y.; Guo, B.L. Generation mechanisms of fundamental rogue wave spatial-temporal structure. Phys. Rev. E 2017, 96, 022211. [Google Scholar] [CrossRef] [PubMed]
- Peregrine, D.H. Water Waves, Nonlinear Schrödinger Equations and Their Solutions. J. Aust. Math. Soc. B 1983, 25, 16–43. [Google Scholar] [CrossRef]
- Li, Z.; Jin, X.X.C. Phase portraits and optical soliton solutions of coupled nonlinear Maccari systems describing the motion of solitary waves in fluid flow. Results Phys. 2022, 41, 105932. [Google Scholar] [CrossRef]
- Jiang, Y.; Rao, J.G.; Mihalache, D.; He, J.S.; Cheng, Y. Rogue breathers and rogue lumps on a background of dark line solitons for the Maccari system. Commun. Nonlinear Sci. 2021, 102, 105943. [Google Scholar] [CrossRef]
- Liu, L.; Yuan, Y.Q.; Sun, Y. Bright and dark N-soliton solutions for the (2+1)-dimensional Maccari system. Eur. Phys. J. Plus 2018, 133, 72. [Google Scholar] [CrossRef]
- Akbar, Y.; Afsar, H.; Abbas, S.; Javed, W.M.; Ullah, N. Dromions for the coupled Maccari’s system in fluid mechanics. Chaos Solitons Fractals 2021, 150, 111114. [Google Scholar] [CrossRef]
- Cheemaa, N.; Chen, S.; Seadawy, A.R. Propagation of isolated waves of coupled nonlinear (2+1)-dimensional Maccari system in plasma physics. Results Phys. 2020, 17, 102987. [Google Scholar] [CrossRef]
- Chen, Z.X.; Manafian, J.; Raheel, M.; Zafar, A.; Alsaikhan, F.; Abotaleb, M. Extracting the exact solitons fo time-fractional three coupled nonlinear Maccari’s system with complex form via four different methods. Results Phys. 2022, 36, 105400. [Google Scholar] [CrossRef]
- Jiang, Y.; Xian, D.Q.; Kang, X.R. Homoclinic breather and rogue wave solutions to Maccari equation. Comput. Math. Appl. 2020, 79, 1890–1894. [Google Scholar] [CrossRef]
- Thilakavathy, J.; Amrutha, R.; Subramanian, K.; Mani Rajan, M.S. Different wave patterns for (2+1) dimensional Maccari’s equation. Nonlinear Dyn. 2022, 108, 445–456. [Google Scholar] [CrossRef]
- Cheemaa, N.; Younla, M. New and more exact traveling wave solutions to integrable (2+1)-dimensional Maccari systems. Nonlinear Dyn. 2016, 83, 1395–1401. [Google Scholar] [CrossRef]
- Neirameh, A. New analytical solutions for the coupled nonlinear Maccari’s system. Alex. Eng. J. 2016, 55, 2839–2847. [Google Scholar] [CrossRef]
- Baskonus, H.M.; Sulaiman, T.A.; Bulut, H. On the novel wave behaviors to the coupled nonlinear Maccari’s systems with complex structure. Optik 2017, 131, 1036–1043. [Google Scholar] [CrossRef]
- Alkhidhr, H.A.; Abdelrahman, M.A.E. Wave structures to the three coupled nonlinear Maccari’s systems in plasma physics. Results Phys. 2022, 33, 105092. [Google Scholar] [CrossRef]
- Islam, T.; Akbar, A.; Rezazadeh, H.; Bekir, A. New-fashioned solitons of coupled nonlinear Maccari systems describing the motion of solitary waves in fluid flow. J. Ocean Eng. Sci. 2022, in press. [CrossRef]
- Bilal, M.; Ahmad, J. Investigation of diverse exact soliton solutions to the nonlinear dynamical model via three mathematical methods. J. Ocean Eng. Sci. 2022, in press. [CrossRef]
- Ciancio, A.; Baskonus, H.M.; Sulaiman, A.; Bulut, M. New structural dynamics of isolated vaves via the coupled nonlinear Maccari’s system with complex structure. Indian J. Phys. 2022, 92, 1281–1290. [Google Scholar] [CrossRef]
- Xia, P.; Zhang, Y.; Zhang, H.; Zhuang, Y. Some novel dynamical behavior of localized solitary waves for the Maccari system. Nonlinear Dyn. 2022, 108, 533–541. [Google Scholar] [CrossRef]
- Asli, P. Local and nonlocal (2+1)-dimensional Marccari systems and their soliton solutions. Phys. Scr. 2021, 96, 035217. [Google Scholar]
- Maccari, A. The Maccari system as model system for rogue waves. Phys. Lett. A 2020, 384, 126740. [Google Scholar] [CrossRef]
- Maccari, A. A Parametric Resonance for the Hirota-Maccari Equation. Symmetry 2022, 14, 1444. [Google Scholar] [CrossRef]
- Maccari, A. Chaotic and fractal patterns for interacting nonlinear waves. Chaos Solitons Fractals 2010, 43, 86–95. [Google Scholar] [CrossRef]
- Tang, X.Y.; Lou, S.-Y.; Zhang, Y. Localized excitations in (2+1)-dimensional systems. Phys. Rev. E 2022, 66 Pt 2, 046601. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maccari, A. Rogue Waves Generator and Chaotic and Fractal Behavior of the Maccari System with a Resonant Parametric Forcing. Symmetry 2022, 14, 2321. https://doi.org/10.3390/sym14112321
Maccari A. Rogue Waves Generator and Chaotic and Fractal Behavior of the Maccari System with a Resonant Parametric Forcing. Symmetry. 2022; 14(11):2321. https://doi.org/10.3390/sym14112321
Chicago/Turabian StyleMaccari, Attilio. 2022. "Rogue Waves Generator and Chaotic and Fractal Behavior of the Maccari System with a Resonant Parametric Forcing" Symmetry 14, no. 11: 2321. https://doi.org/10.3390/sym14112321
APA StyleMaccari, A. (2022). Rogue Waves Generator and Chaotic and Fractal Behavior of the Maccari System with a Resonant Parametric Forcing. Symmetry, 14(11), 2321. https://doi.org/10.3390/sym14112321