Approximate Closed-Form Solutions for the Rabinovich System via the Optimal Auxiliary Functions Method
Abstract
:1. Introduction
2. The Rabinovich System
2.1. Global Analytic First Integrals and Hamilton-Poisson Realization
2.2. Closed-Form Solutions
- (i)
- , , , .
- (ii)
- , , , .
- (iii)
- , , , .
- (iv)
- , , , .
- (v)
- , , , .
3. Approximate Analytic Solutions via OAFM
4. Numerical Results and Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. The Case β ≠ 0, α1 = 0, α2 = 0, α3 = 0
Appendix A.2. The Remarkable Case β = 0, α1 = 0, α2 = 0, α3 = 0
Appendix A.3. The Case β = 0.25, α1 = 0, α2 = 0.05, α3 = 0
Appendix A.4. The Case β = 0.25, α1 = 0.05, α2 = 0, α3 = 0
Appendix A.5. The Case β = 0, α1 = 0, α2 = 0, α3 = 0.15
References
- Pikovskii, A.S.; Rabinovich, M.I. Stochastic behavior of dissipative systems. Soc. Sci. Rev. C Math. Phys. Rev. 1981, 2, 165–208. [Google Scholar]
- Pikovskii, A.S.; Rabinovich, M.I.; Trakhtengerts, V.Y. Onset of stochasticity in decay confinement of parametric instability. Soc. Phys. JETP 1978, 47, 715–719. [Google Scholar]
- Kuznetsov, N.V.; Leonov, G.A.; Mokaev, T.N.; Seledzhi, S.M. Hidden attractor in the Rabinovich system, Chua circuits and PLL. AIP Conf. Proc. 2016, 1738, 210008. [Google Scholar] [CrossRef]
- Xiang, Z. Integrals of motion of the Rabinovich system. J. Phys. A Math. Gen. 2000, 33, 5137. [Google Scholar] [CrossRef]
- Tudoran, R.M.; Girban, A. On the Hamiltonian dynamics and geometry of the Rabinovich system. Discrete Cont. Dyn.-B 2011, 15, 789–823. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, X. Invariant algebraic surfaces of the Rabinovich system. J. Phys. A Math. Gen. 2003, 36, 499. [Google Scholar] [CrossRef]
- Kocamaz, U.E.; Uyaroglu, Y.; Kizmaz, H. Control of Rabinovich chaotic system using sliding mode control. Int. J. Adapt. Control 2013, 28, 1413–1421. [Google Scholar] [CrossRef]
- Lazureanu, C.; Caplescu, C. Stabilization of the T system by an integrable deformation. In Proceedings of the International Conference on Applied Mathematics and Numerical Methods Third Edition, Craiova, Romania, 29–31 October 2020. [Google Scholar] [CrossRef]
- Braga, D.C.; Scalco, D.F.; Mello, L.F. On the stability of the equilibria of the Rikitake system. Phys. Lett. A 2010, 374, 4316–4320. [Google Scholar] [CrossRef]
- Rikitake, T. Oscillations of a system of disk dynamos. Proc. Camb. Philos. Soc. 1958, 54, 89–105. [Google Scholar] [CrossRef]
- Steeb, W.H. Continuous symmetries of the Lorenz model and the Rikitake two-disc dynamo system. J. Phys. A Math. Gen. 1982, 15, 389–390. [Google Scholar] [CrossRef]
- Binzar, T.; Lazureanu, C. On the symmetries of a Rabinovich type system. Sci. Bull. Math.-Phys. 2012, 57, 29–36. [Google Scholar]
- Lazureanu, C.; Binzar, T. Symmetries of some classes of dynamical systems. J. Nonlinear Math. Phys. 2015, 22, 265–274. [Google Scholar] [CrossRef]
- Lazureanu, C.; Petrisor, C.; Hedrea, C. On a deformed version of the two-disk dynamo system. Appl. Math. 2021, 66, 345–372. [Google Scholar] [CrossRef]
- Lazureanu, C.; Petrisor, C. Stability and energy-Casimir Mapping for integrable deformations of the Kermack-McKendrick system. Adv. Math. Phys. 2018, 2018, 5398768. [Google Scholar] [CrossRef]
- Lazureanu, C. Integrable deformations of three-dimensional chaotic systems. Int. J. Bifurcat. Chaos 2018, 28, 71850066. [Google Scholar] [CrossRef]
- Lazureanu, C. Hamilton-Poisson realizations of the integrable deformations of the Rikitake system. Adv. Math. Phys. 2017, 2017, 4596951. [Google Scholar] [CrossRef] [Green Version]
- Lazureanu, C. The real-valued Maxwell-Bloch equations with controls: From a Hamilton-Poisson system to a chaotic one. Int. J. Bifurcat. Chaos 2017, 27, 1750143. [Google Scholar] [CrossRef]
- Lazureanu, C. On a Hamilton-Poisson approach of the Maxwell-Bloch equations with a control. Math. Phys. Anal. Geom. 2017, 3, 20. [Google Scholar] [CrossRef]
- Lazureanu, C.; Binzar, T. Symmetries and properties of the energy-Casimir mapping in the ball-plate problem. Adv. Math. Phys. 2017, 2017, 5164602. [Google Scholar] [CrossRef] [Green Version]
- Lazureanu, C.; Binzar, T. On some properties and symmetries of the 5-dimensional Lorenz system. Math. Probl. Eng. 2015, 2015, 438694. [Google Scholar] [CrossRef]
- Lazureanu, C.; Binzar, T. Some symmetries of a Rossler type system. Sci. Bull. Math.-Phys. 2013, 58, 1–6. [Google Scholar]
- Binzar, T.; Lazureanu, C. A Rikitake type system with one control. Discrete Contin. Dyn. Syst.-B 2013, 18, 1755–1776. [Google Scholar] [CrossRef]
- Lazureanu, C.; Binzar, T. Symplectic realizations and symmetries of a Lotka-Volterra type system. Regul. Chaotic Dyn. 2013, 18, 203–213. [Google Scholar] [CrossRef]
- Lazureanu, C.; Binzar, T. A Rikitake type system with quadratic control. Int. J. Bifurcat. Chaos 2012, 22, 1250274. [Google Scholar] [CrossRef]
- Lazureanu, C.; Binzar, T. On the symmetries of a Rikitake type system. C. R. Math. Acad. Sci. Paris 2012, 350, 529–533. [Google Scholar] [CrossRef] [Green Version]
- Lazureanu, C. On the Hamilton-Poisson realizations of the integrable deformations of the Maxwell-Bloch equations. C. R. Math. Acad. Sci. Paris 2017, 355, 596–600. [Google Scholar] [CrossRef]
- Candido Murilo, R.; Llibre, J.; Valls, C. New symmetric periodic solutions for the Maxwell-Bloch differential system. Math. Phys. Anal. Geom. 2019, 22, 16. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Q.; Pang, G. A hyperchaotic system from the Rabinovich system. J. Comput. Appl. Math. 2010, 234, 101–113. [Google Scholar] [CrossRef] [Green Version]
- David, D.; Holm, D. Multiple Lie–Poisson structures, reduction and geometric phases for the Maxwell–Bloch traveling wave equations. J. Nonlinear Sci. 1992, 2, 241–262. [Google Scholar] [CrossRef]
- Puta, M. On the Maxwell–Bloch equations with one control. C. R. Math. Acad. Sci. Paris 1994, 318, 679–683. [Google Scholar]
- Puta, M. Three dimensional real valued Maxwell–Bloch equations with controls. Rep. Math. Phys. 1996, 37, 337–348. [Google Scholar] [CrossRef]
- Arecchi, F.T. Chaos and generalized multistability in quantum optics. Phys. Scr. 1985, 9, 85–92. [Google Scholar] [CrossRef]
- Casu, I.; Lazureanu, C. Stability and integrability aspects for the Maxwell-Bloch equations with the rotating wave approximation. Regul. Chaotic Dyn. 2017, 22, 109–121. [Google Scholar] [CrossRef]
- Zuo, D.W. Modulation instability and breathers synchronization of the nonlinear Schrodinger Maxwell–Bloch equation. Appl. Math. Lett. 2018, 79, 182–186. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.Q.; Sun, W.R.; Shi, Y.Y.; Li, M.; Xu, M. Dynamics of Peregrine combs and Peregrine walls in an inhomogeneous Hirota and Maxwell–Bloch system. Commun. Nonlinear Sci. 2017, 47, 190–199. [Google Scholar] [CrossRef]
- Wei, J.; Wang, X.; Geng, X. Periodic and rational solutions of the reduced Maxwell–Bloch equations. Commun. Nonlinear Sci. 2018, 59, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Binzar, T.; Lazureanu, C. On some dynamical and geometrical properties of the Maxwell–Bloch equations with a quadratic control. J. Geom. Phys. 2013, 70, 1–8. [Google Scholar] [CrossRef]
- Puta, M. Integrability and geometric prequantization of the Maxwell-Bloch equations. Bull. Sci. Math. 1998, 122, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Llibre, J.; Valls, C. Global analytic integrability of the Rabinovich system. J. Geom. Phys. 2008, 58, 1762–1771. [Google Scholar] [CrossRef]
- Herisanu, N.; Marinca, V. Accurate analytical solutions to oscillators with discontinuities and fractional-power restoring force by means of the optimal homotopy asymptotic method. Comput. Math. Appl. 2010, 60, 1607–1615. [Google Scholar] [CrossRef] [Green Version]
- Marinca, V.; Herisanu, N. The Optimal Homotopy Asymptotic Method—Engineering Applications; Springer: Heidelberg, Germany, 2015. [Google Scholar]
- Marinca, V.; Herisanu, N. An application of the optimal homotopy asymptotic method to Blasius problem. Rom. J. Tech. Sci. Appl. Mech. 2015, 60, 206–215. [Google Scholar]
- Marinca, V.; Herisanu, N. Nonlinear dynamic analysis of an electrical machine rotor-bearing system by the optimal homotopy perturbation method. Comp. Math. Appl. 2011, 61, 2019–2024. [Google Scholar] [CrossRef] [Green Version]
- Marinca, V.; Ene, R.D.; Marinca, B. Optimal Homotopy Perturbation Method for nonlinear problems with applications. Appl. Comp. Math. 2022, 21, 123–136. [Google Scholar]
- Turkyilmazoglu, M. An optimal variational iteration method. Appl. Math. Lett. 2011, 24, 762–765. [Google Scholar] [CrossRef] [Green Version]
- Marinca, V.; Draganescu, G.E. Construction of approximate periodic solutions to a modified van der Pol oscillator. Nonlinear Anal. Real World Appl. 2010, 11, 4355–4362. [Google Scholar] [CrossRef]
- Caruntu, B.; Bota, C.; Lapadat, M.; Pasca, M.S. Polynomial Least Squares Method for Fractional Lane-Emden Equations. Symmetry 2019, 11, 479. [Google Scholar] [CrossRef]
- Bota, C.; Caruntu, B.; Tucu, D.; Lapadat, M.; Pasca, M.S. A Least Squares Differential Quadrature Method for a Class of Nonlinear Partial Differential Equations of Fractional Order. Mathematics 2020, 8, 1336. [Google Scholar] [CrossRef]
- Amer, T.S.; Bek, M.A.; Hassan, S.S.; Elbendary, S. The stability analysis for the motion of a nonlinear damped vibrating dynamical system with three-degrees-of-freedom. Results Phys. 2021, 28, 104561. [Google Scholar] [CrossRef]
- El-Rashidy, K.; Seadawy Aly, R.; Saad, A.; Makhlou, M.M. Multiwave, Kinky breathers and multi-peak soliton solutions for the nonlinear Hirota dynamical system. Results Phys. 2020, 19, 103678. [Google Scholar] [CrossRef]
- Hussain, S.; Shah, A.; Ayub, S.; Ullah, A. An approximate analytical solution of the Allen-Cahn equation using homotopy perturbation method and homotopy analysis method. Heliyon 2019, 5, e03060. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xu, Q.; Atluri, S.N. Combination of the variational iteration method and numerical algorithms for nonlinear problems. Appl. Math. Model. 2020, 79, 243–259. [Google Scholar] [CrossRef]
- Marinca, V.; Herisanu, N. Approximate analytical solutions to Jerk equation. In Springer Proceedings in Mathematics & Statistics: Proceedings of the Dynamical Systems: Theoretical and Experimental Analysis, Lodz, Poland, 7–10 December 2015; Springer: Cham, Switzerland, 10 December 2016; Volume 182, pp. 169–176. [Google Scholar]
t | |||
---|---|---|---|
0 | 1.332267 | 4.440892 | 2.646771 |
7/5 | 0.0002311701 | 9.690649 | 5.424820 |
14/5 | 0.0001494743 | 9.806902 | 3.389437 |
21/5 | 0.0001987102 | 1.243573 | 1.842952 |
28/5 | 0.0000961699 | 5.341956 | 6.126734 |
7 | 0.0001210484 | 2.545193 | 4.273881 |
42/5 | 0.0000661653 | 1.815027 | 2.335903 |
49/5 | 9.306109 | 2.151637 | 5.521745 |
56/5 | 0.0000211790 | 2.055369 | 4.816658 |
63/5 | 0.0001510944 | 2.318730 | 7.166223 |
14 | 0.0001919623 | 1.595892 | 1.900378 |
t | |||
---|---|---|---|
0 | 9.475753 | 1.587063 | 7.716050 |
3/5 | 3.504900 | 3.316779 | 8.194535 |
6/5 | 2.914220 | 2.904368 | 7.775160 |
9/5 | 4.067788 | 3.306752 | 1.002242 |
12/5 | 5.020959 | 3.350227 | 1.013316 |
3 | 2.399299 | 3.095774 | 6.350594 |
18/5 | 7.499806 | 3.033164 | 9.363366 |
21/5 | 2.634217 | 3.698857 | 7.855941 |
24/5 | 1.023441 | 3.459891 | 2.951037 |
27/5 | 1.061241 | 3.200782 | 4.558553 |
6 | 1.528191 | 3.492756 | 5.671638 |
t | |||
---|---|---|---|
0 | 0.3819660112 | 0.3819660112 | 6.566969 |
8/5 | 0.5487198876 | 0.5487198871 | 4.569626 |
16/5 | 0.3347566620 | 0.3347566624 | 4.373337 |
24/5 | −0.0474300084 | −0.0474300074 | 9.474402 |
32/5 | −0.3828045448 | −0.3828045450 | 2.316530 |
8 | −0.5042437854 | −0.5042437838 | 1.624801 |
48/5 | −0.3375790298 | −0.3375790299 | 8.105455 |
56/5 | −0.0332606638 | −0.0332606646 | 8.140353 |
64/5 | 0.2599740718 | 0.2599740722 | 3.694533 |
72/5 | 0.4407383794 | 0.4407383798 | 4.701539 |
16 | 0.4140215615 | 0.4140215610 | 5.571915 |
t | |||
---|---|---|---|
0 | 0.6180339887 | 0.6180339887 | 8.881784 |
8/5 | −0.0321978118 | −0.0321978110 | 7.381383 |
16/5 | −0.5983010647 | −0.5983010645 | 2.040423 |
24/5 | −0.6430063264 | −0.6430063265 | 1.829493 |
32/5 | −0.1556677170 | −0.1556677166 | 3.093710 |
8 | 0.4057018841 | 0.4057018832 | 9.304779 |
48/5 | 0.5626679938 | 0.5626679941 | 3.481130 |
56/5 | 0.1791865300 | 0.1791865294 | 6.380252 |
64/5 | −0.3292856584 | −0.3292856577 | 6.622721 |
72/5 | −0.4774573136 | −0.4774573135 | 1.349091 |
16 | −0.1296948250 | −0.1296948251 | 8.001704 |
t | |||
---|---|---|---|
0 | 0.3217505543 | 0.3217505543 | 1.665334 |
3/5 | −0.4222547682 | −0.4222561402 | 1.371977 |
6/5 | −0.8296437373 | −0.8296451162 | 1.378897 |
9/5 | −0.7776543854 | −0.7776557673 | 1.381888 |
12/5 | −0.3129872607 | −0.3129886423 | 1.381552 |
3 | 0.3239044822 | 0.3239031031 | 1.379085 |
18/5 | 0.6815903593 | 0.6815889752 | 1.384109 |
21/5 | 0.5989387285 | 0.5989373473 | 1.381160 |
24/5 | 0.1453366672 | 0.1453352855 | 1.381609 |
27/5 | −0.3742949616 | −0.3742963398 | 1.378268 |
6 | −0.5850269138 | −0.5850282851 | 1.371267 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ene, R.-D.; Pop, N.; Lapadat, M. Approximate Closed-Form Solutions for the Rabinovich System via the Optimal Auxiliary Functions Method. Symmetry 2022, 14, 2185. https://doi.org/10.3390/sym14102185
Ene R-D, Pop N, Lapadat M. Approximate Closed-Form Solutions for the Rabinovich System via the Optimal Auxiliary Functions Method. Symmetry. 2022; 14(10):2185. https://doi.org/10.3390/sym14102185
Chicago/Turabian StyleEne, Remus-Daniel, Nicolina Pop, and Marioara Lapadat. 2022. "Approximate Closed-Form Solutions for the Rabinovich System via the Optimal Auxiliary Functions Method" Symmetry 14, no. 10: 2185. https://doi.org/10.3390/sym14102185
APA StyleEne, R.-D., Pop, N., & Lapadat, M. (2022). Approximate Closed-Form Solutions for the Rabinovich System via the Optimal Auxiliary Functions Method. Symmetry, 14(10), 2185. https://doi.org/10.3390/sym14102185