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Abstract: Based on some geometrical properties (symmetries and global analytic first integrals) of
the Rabinovich system the closed-form solutions of the equations have been established. The chaotic
behaviors are excepted. Moreover, the Rabinovich system is reduced to a nonlinear differential
equation depending on an auxiliary unknown function. The approximate analytical solutions are
built using the Optimal Auxiliary Functions Method (OAFM). The advantage of this method is to
obtain accurate solutions for special cases, with only an analytic first integral. An important output is
the existence of complex eigenvalues, depending on the initial conditions and physical parameters
of the system. This approach was not still analytically emphasized from our knowledge. A good
agreement between the analytical and corresponding numerical results has been performed. The
accuracy of the obtained results emphasizes that this procedure could be successfully applied to more
dynamic systems with these geometrical properties.

Keywords: optimal auxiliary functions method; Rabinovich system; symmetries; Hamilton–Poisson
realization; periodical orbits
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1. Introduction

The Rabinovich system was first studied in [1] with the analysis of a concrete realiza-
tion in a magnetoactive non-isothermal plasma. This system is a dynamical system of three
resonantly coupled waves, parametrically excited [2].

There are some previous papers where are pointed out the relevance for engineering
applications of the Rabinovich system, such as: in [3] is reported the existence of hidden
attractors and applied to coupled Chua circuits; the integrals of motion were characterized
by using the method of characteristic curves in [4]; some relevant dynamical and geometri-
cal properties [5]; the Darboux polynomials [6]. Numerical simulations were investigated
in [7] showing that the Rabinovich chaotic system can be regulated to its equilibrium points
in the state space.

The synchronization or optimization of nonlinear system performance, secure com-
munications, and other applications in electrical engineering or medicine are based on
the study of dynamical systems. Ref. [8] explored the stabilization of the T system via
linear controls, and [9] studied the Rikitake two-disk dynamic system and applied it in
modeling the reversals of the Earth’s magnetic field [10,11]. Some geometrical properties
of the dynamical systems: the integral deformations, the equilibria points, Hamiltonian
realization was analyzed in [12–39].

The symmetry represents an important geometrical property of the dynamical system.
As it is well known, a dynamic system admits symmetry with respect to the origin point
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O(0, 0, 0) or with the Oz− axis or the plan z = 0 if it is invariant under the transformation
(x, y, z) → (−x,−y,−z), respectively (x, y, z) → (−x,−y, z) and (x, y, z) → (x, y,−z).

The paper is organized as follows: Section 2 provides a brief description of the ge-
ometrical properties and the closed-form solutions of the Rabinovich system. Section 3
is dedicated to building approximate analytic solutions using the OAFM technique. The
presented analysis and the corresponding numerical results are discussed in the Numerical
results and Discussions sections. Here, we observe the importance and precision of the
method by means of the convergence-control parameters. The accuracy and the good
agreement between the results are highlighted in the Conclusion section.

2. The Rabinovich System
2.1. Global Analytic First Integrals and Hamilton-Poisson Realization

The Rabinovich system has the form (see [3–7,12,28,29,40]):
ẋ = yz− α1x + βy
ẏ = −x · z− α2y + βx
ż = x · y− α3z

, (1)

where the unknown functions x, y and z depend on t > 0, (β, α1, α2, α3) ∈ R4 and ẋ
denotes the derivative of the function x with respect to t.

Remark 1. Is easy to see that the considered system admits a symmetry with respect to Oz- axis,
for β 6= 0 and symmetries with respect to Oz, Ox, Oy axes, for β = 0, respectively.

In this section, we also recall some geometrical properties of the system (1) [12].
The global analytic first integrals of the Rabinovich system are obtained in [40].
The considered system has a Hamilton-Poisson realization with the Hamiltonian and the

Casimir given by H(x, y, z) = 1
4 (x2 − z2) and C(x, y, z) = 1

4 (x2 + 2y2 + z2), respectively,
for β = 0, α1 = 0, α2 = 0, α3 = 0; H(x, y, z) = − β

2 x2 + β
2 y2 + βz2 and C(x, y, z) =

− 1
4β x2 − 1

4β y2 + z, for β 6= 0, α1 = 0, α2 = 0, α3 = 0.
There exist three isolated cases:
H(x, y, z) = x2 − z2 − 2βz, for β ∈ R, α1 = 0, α2 6= 0, α3 = 0;
H(x, y, z) = y2 + z2 − 2βz, for β ∈ R, α1 6= 0, α2 = 0, α3 = 0;
H(x, y, z) = x2 + y2, for β = 0, α1 = 0, α2 = 0, α3 6= 0.

Remark 2. For the initial conditions

x(0) = x0 , y(0) = y0 , z(0) = z0 , (2)

the phase curves of dynamics (1) are the intersections of the surfaces
− β

2 x2 + β
2 y2 + βz2 = − β

2 x2
0 +

β
2 y2

0 + βz2
0 and − 1

4β x2 − 1
4β y2 + z = − 1

4β x2
0 −

1
4β y2

0 +

z0 , for β 6= 0, α1 = 0, α2 = 0, α3 = 0;
x2 − z2 = x2

0 − z2
0 and x2 + 2y2 + z2 = x2

0 + 2y2
0 + z2

0 , for β = 0, α1 = 0,
α2 = 0, α3 = 0, respectively.

2.2. Closed-Form Solutions

In this section, we establish the closed-form solutions of the system Equation (1) using
previous results, considering the real values for the physical parameters as β, a1, a2, a3.

(i) β 6= 0, α1 = 0, α2 = 0, α3 = 0.

Using the transformations: y(t) = R
4β ·

2v(t)
1+v2(t)

z(t) = β + R
4β ·

1−v2(t)
1+v2(t)

, (3)
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where R = 4
√

β · (Hβ − 2β2 · Cβ + β3), Hβ = − β
2 x2

0 +
β
2 y2

0 + βz2
0, Cβ = − 1

4β x2
0 −

1
4β y2

0 + z0,

v(t) is an unknown smooth function.
The third equation from Equation (1) yields to

x(t) = − 2v̇(t)
1 + v2(t)

. (4)

Now, using the first equation from Equation (1) we obtain:

v̈(t) · (1+ v2(t))− 2v(t) · (v̇(t))2 +
R2

16β2 · v(t) · (1− v2(t))+
R
2
· v(t) · (1+ v2(t)) = 0 . (5)

Using the initial conditions Equation (2) and the relations Equations (3) and (4) the
initial conditions v(0) and v̇(0) become:

v(0) =

√√√√1− 4β
R · (z0 − β)

1 + 4β
R · (z0 − β)

, v̇(0) = − x0

2
·
(

1 +
1− 4β

R · (z0 − β)

1 + 4β
R · (z0 − β)

)
. (6)

Remark 3. If the function v(t) is the exact solution of the problem given by Equations (5) and (6),
then the relations Equations (3) and (4) give closed-form solution of the system Equation (1). If the
function v(t) is an analytic approximate solution of the problem given by Equations (5) and (6), then
the relations Equations (3) and (4) give approximate closed-form solution of the system Equation (1).

(ii) β = 0, α1 = 0, α2 = 0, α3 = 0.

For this particular case, the system (1) reduces to
ẋ = yz
ẏ = −x · z
ż = x · y

. (7)

Making the transformations:
x(t) = sign(x0) · R · 1√

1+u2(t)

y(t) = sign(y0) · R · u(t)√
1+u2(t)

, (8)

where R =
√

x2
0 + y2

0 and u(t) is an unknown smooth function, then the second equation
from Equation (7) yields to

z(t) = − sign(y0)

sign(x0)
· u̇(t)

1 + u2(t)
. (9)

Now, using the third equation from Equation (7) we obtain:

ü(t)− 2u(t)
1 + u2(t)

· (u̇(t))2 + R2 · u(t) = 0 . (10)

Using the initial conditions Equation (2) and the relations Equations (3) and (4) the
initial conditions u(0) and u̇(0) become:

u(0) =
sign(y0)

sign(x0)
· y0

x0
, u̇(0) = −sign(z0) · z0 ·

(
1 + u2(0)

)
. (11)

Remark 4. If the function u(t) is the exact solution of the problem given by Equations (10) and (11),
then the relations Equations (8) and (9) give closed-form solution of the system Equation (7). If the
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function v(t) is an analytic approximate solution of the problem given by Equations (5) and (6), then
the relations Equations (3) and (4) give approximate closed-form solution of the system Equation (7).

(iii) β ∈ R, α1 = 0, α2 6= 0, α3 = 0.

The closed-form solutions can be put in the following form: x(t) = R · 2·u(t)
1−u2(t)

z(t) = −β + R · 1+u2(t)
1−u2(t)

, (12)

where R =
√
(z0 + β)2 − x2

0, for (z0 + β)2 − x2
0 > 0, and x(t) = R · 1+u2(t)

1−u2(t)

z(t) = −β + R · 2·u(t)
1−u2(t)

, (13)

where R =
√

x2
0 − (z0 + β)2, for x2

0 − (z0 + β)2 > 0, respectively.
Then the third equation from Equation (1) yields to

y(t) =
2u̇(t)

1− u2(t)
. (14)

The unknown smooth function u(t) is the solution of the nonlinear problem:
ü(t) · (1− u2(t)) + 2u(t) · (u̇(t))2 + R2 · u(t) · (1 + u2(t))−
−2β · R · u(t) · (1− u2(t)) + α2 · (1− u2(t)) · u̇(t) = 0
u(0) = sign(x0) · x0

z0+β+R , u̇(0) = y0
2 ·
(
1− u2(0)

)
.

(15)

(iv) β ∈ R, α1 6= 0, α2 = 0, α3 = 0.

The closed-form solutions can be put in the following form: y(t) = R · 2·u(t)
1+u2(t)

z(t) = β + R · 1−u2(t)
1+u2(t)

, (16)

where R =
√
(z0 − β)2 + y2

0. Then the third equation from Equation (1) yields to

x(t) = − 2u̇(t)
1 + u2(t)

. (17)

The unknown smooth function u(t) is the solution of the nonlinear problem:
ü(t) · (1 + u2(t))− 2u(t) · (u̇(t))2 + R2 · u(t) · (1− u2(t))+
+2β · R · u(t) · (1 + u2(t)) + α1 · (1 + u2(t)) · u̇(t) = 0

u(0) =
√

R−(z0−β)
R+(z0−β)

, u̇(0) = − x0
2 ·
(
1 + u2(0)

)
.

(18)

(v) β = 0, α1 = 0, α2 = 0, α3 6= 0.

The closed-form solutions can be put in the following form:{
x(t) = R · cos(u(t))
y(t) = R · sin(u(t))

, (19)
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where R =
√

x2
0 + y2

0. Then the first equation from Equation (1) yields to

z(t) = −u̇(t) . (20)

The unknown smooth function u(t) is the solution of the nonlinear problem:{
ü(t) + α3 · u̇(t) + R2

2 · sin(2 · u(t)) = 0
u(0) = arctan y0

x0
, u̇(0) = −z0 .

(21)

In the literature, there are several analytical methods for solving the nonlinear dif-
ferential problem is given by Equations (5), (6), (10), (11), (15), (18) and (21) such as: the
Optimal Homotopy Asymptotic Method (OHAM) [41–43], the Optimal Homotopy Per-
turbation Method (OHPM) [44,45], the Optimal Variational Iteration Method (OVIM) [46],
the Optimal Iteration Parametrization Method (OIPM) [47], the Polynomial Least Squares
Method [48], the Least Squares Differential Quadrature Method [49], the Multiple Scales
Technique [50], the Function Method [51], the Homotopy Perturbation Method (HPM) and
the Homotopy Analysis Method (HAM) [52], the Variational Iteration Method (VIM) [53].

In this work the approximate analytic solutions of the nonlinear differential problem
given by Equations (5), (6), (10), (11), (15), (18) and (21) are analytically solved using the
Optimal Auxiliary Functions Method (OAFM).

3. Approximate Analytic Solutions via OAFM

We introduce the basic ideas of the OAFM by considering Equation (5) with the initial
conditions given by Equation (6) in general form as in [43,54]:

L
[
v̄(t)

]
+ g(t) +N

[
v̄(t)

]
= 0, (22)

where L is a linear operator, g is a known function and N is a given nonlinear operator, t
denotes the independent variable and the approximate solution v̄(t) is written with just
two components in the form:

v(t) = v0(t) + v1(t, Ci), i = 1, 2, . . . , s . (23)

The initial approximation v0(t) and the first approximation v1(t, Ci) will be determined
as follows.

Firstly, the Equation (22) becomes

L
[
v0(t)

]
+ L

[
v1(t, Ci)

]
+ g(t) +N

[
v0(t) + v1(t, Ci)

]
= 0. (24)

The linear operator L could be chosen by the form [54]:

L
(

v(t)
)
= v̈(t) + ω2

0v(t), (25)

where ω0 > 0 is an unknown parameter.
From Equation (24) using Equation (25) and initial conditions Equation (6), the initial

approximation v0(t) is solution of the problem (g(t) = 0):

v̈(t) + ω2
0v(t) = 0, v(0) =

√√√√1− 4β
R · (z0 − β)

1 + 4β
R · (z0 − β)

,

v̇(0) = − x0

2
·
(

1 +
1− 4β

R · (z0 − β)

1 + 4β
R · (z0 − β)

)
,

(26)
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namely:

v0(t) = v(0) · cos ω0t +
v̇(0)
ω0
· sin ω0t. (27)

The nonlinear operator N
(

v(t)
)

is obtained from Equations (5) and (25):

N
(

v(t)
)
= −ω2

0v(t) + v̈(t) · v2(t)− 2v(t) · (v̇(t))2 +
R2

16β2 · v(t) · (1− v2(t)) +
R
2
· v(t) · (1 + v2(t)) , (28)

and can be expanded in the form

N
[
v0(t) + v1(t, Ci)

]
=

= N
[
v0(t)

]
+

∞

∑
k=1

vk
1(t, Ci)

k!
N (k)

[
v0(t)

]
.

(29)

By means of the Equations (27) and (28) it is obtain

N
(

v0(t)
)
= M1 · cos ω0t + N1 · sin ω0t + M2 · cos 3ω0t + N2 · sin 3ω0t , (30)

where

M1 = −ω2
0 M−

5Mω2
0

4
(M2 + N2) +

R2M
64β2 (4− 3M2 − 3N2) +

RM
8

(4 + 3M2 + 3N2) ,

N1 = −ω2
0 N −

5Nω2
0

4
(M2 + N2) +

R2N
64β2 (4− 3M2 − 3N2) +

RM
8

(4− 3M2 + 3N2) ,

M2 = −
Mω2

0
4

(3N2 −M2) +
R2M
64β2 (3N2 −M2) +

RM
8

(M2 − 3N2) ,

N2 = −
Nω2

0
4

(N2 − 3M2) +
R2N
64β2 (N2 − 3M2) +

RN
8

(3M2 − N2) ,

M = v(0) , N =
v̇(0)
ω0

.

(31)

Using Equations (24), (25) and (27)–(29), the first approximation v1(t) is solution of
the problem:

L
[
v1(t, Ci)

]
+ A1

[
v0(t), Ci

]
N
[
v0(t)

]
+

+A2

[
v0(t), Cj

]
= 0,

(32)

v1(0, Ci) = 0 , v̇1(0, Ci) = 0, (33)

where A1 and A2 are two arbitrary auxiliary functions depending on the initial approx-
imation v0(t) and several unknown parameters Ci and Cj, i = 1, 2, . . . , p, j = p + 1,
p + 2, . . . , s.

Taking into account of the Equations (32), (25) and (30), the first approximation is
obtained from the equation:

v̈1 + ω2
0v1 + A2(cos ω0t, sin ω0t, cos 3ω0t, sin 3ω0t, Cj) + A1(cos ω0t, sin ω0t, cos 3ω0t, sin 3ω0t, Ci)×

×(M1 · cos ω0t + N1 · sin ω0t + M2 · cos 3ω0t + N2 · sin 3ω0t) = 0,
(34)

with the initial conditions
v1(0) = 0, v̇1(0) = 0 . (35)

There is an opportunity to choose the optimal auxiliary functions A1 and A2 in the
following forms:

A1

[
v0(t), Ci

]
=

Nmax−1

∑
k=1

a(1)k · cos(2k + 1)ω0t + b(1)k · sin(2k + 1)ω0t , (36)
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A2

[
v0(t), Dj

]
=

Nmax

∑
k=1

a(2)k · cos(2k + 1)ω0t + b(2)k · sin(2k + 1)ω0t , (37)

where the convergence-control parameters Ci ∈ {a
(1)
k

∣∣∣ k = 1, Nmax − 1} ∪ {b(1)k

∣∣∣ k =

1, Nmax − 1},
Dj ∈ {a

(2)
k

∣∣∣ k = 1, Nmax} ∪ {b(2)k

∣∣∣ k = 1, Nmax}, Nmax > 2 is an arbitrary fixed integer
number,
or

A1

[
v0(t), Ci

]
= 0,

A2

[
v0(t), Dj

]
= A2

[
v0(t), Dj

]
=

Nmax

∑
k=1

a(2)k · cos(2k + 1)ω0t + b(2)k · sin(2k + 1)ω0t ,

where the convergence-control parameters Dj ∈ {a
(2)
k

∣∣∣ k = 1, Nmax} ∪ {b(2)k

∣∣∣ k = 1, Nmax},
or yet

A1

[
v0(t), Ci

]
= C1 cos ω0t + C2 sin ω0t ,

A2

[
v0(t), Cj

]
= C3 cos 3ω0t + C4 sin 3ω0t,

and so on.
If the auxiliary functions A1 and A2 are given by Equations (36) and (37) then

Equation (32) becomes:

v̈1 + ω2
0v1 =

Nmax

∑
k=1

a(3)k · cos(2k + 1)ω0t + b(3)k · sin(2k + 1)ω0t , (38)

with the initial conditions given in Equation (35), whose solution is:

v1(t, Ci) = a0 cos ω0t + b0 sin ω0t +
Nmax
∑

k=1
a(4)k · cos(2k + 1)ω0t + b(4)k · sin(2k + 1)ω0t , (39)

where

a0 = −
Nmax

∑
k=1

a(4)k , b0 = −
Nmax

∑
k=1

(2k + 1)b(4)k ,

with the unknown parameters a(3)k , b(3)k , a(4)k , b(4)k depending on the convergence-control

parameters a(1)k , b(1)k , a(2)k , b(2)k , so will be optimally identified.
Finally, the approximate analytic solution is obtained from the Equation (23) in the

form:
v(t) = v0(t) + v1(t, Ci), i = 1, 2, . . . , s, (40)

with v0(t) and v1(t, Ci) given by Equations (27) and (39), respectively.
Analogue, in the particular case β = 0, α1 = α2 = α3 = 0, the Equation (10) could be

rewrite in the following form:

ü(t) · (1 + u2(t))− 2u(t) · (u̇(t))2 + R2 · u(t) · (1 + u2(t)) = 0 .

So, choosing the linear operator L
(

u(t)
)

= ü(t) + ω2
0u(t) and the nonlinear op-

erator N
(

u(t)
)

= −ω2
0u(t) + ü(t) · u2(t) − 2u(t) · (u̇(t))2 + R2 · u(t) · (1 + u2(t)), the

approximate analytic solution ū(t) of the Equation (10) with the initial conditions given by
Equation (11) can be obtained via OAFM technique in the form:
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u(t) = u(0) · cos ω0t +
u̇(0)
ω0
· sin ω0t + ã0 cos ω0t + b̃0 sin ω0t+

+
Nmax
∑

k=1
ã(4)k · cos(2k + 1)ω0t + b̃(4)k · sin(2k + 1)ω0t ,

(41)

where the convergence-control parameters ω0, ã0, b̃0, ã(4)k , b̃(4)k will be optimally identified.
Similarly, for the cases α1 6= 0, α2 = α3 = 0 or α2 6= 0, α1 = α3 = 0 respectively, the

linear operator can be
L(u(t)) = ü + ω2

0 · u(t) .

Then, the corresponding nonlinear operator N (u(t)) is obtained from Equations (15)
and (18), respectively, as:

N (u(t)) = −ω2
0 · u(t)− ü(t) · u2(t) + 2u(t) · (u̇(t))2 + R2 · u(t) · (1 + u2(t))−

−2β · R · u(t) · (1− u2(t)) + α2 · (1− u2(t)) · u̇(t)

and

N (u(t)) = −ω2
0 · u(t) + ü(t) · u2(t)− 2u(t) · (u̇(t))2 + R2 · u(t) · (1− u2(t))+

+2β · R · u(t) · (1 + u2(t)) + α1 · (1 + u2(t)) · u̇(t) ,

respectively.
Therefore, by applying the same procedure it obtains that the expression N (u0(t))

is a combination of the elementary functions cos(ω0t), sin(ω0t), cos(3ω0t), sin(3ω0t) in
the both cases. So, the first approximation u1(t) has the form by Equation (39) and the
first-order approximate analytic solution ū(t) has the form by Equation (40).

In the case α3 6= 0, β = α1 = α2 = 0, the linear operator is L
(

u(t)
)
= ü(t) + ω2

0u(t)

and the nonlinear operator is deduced from Equation (21) as N
(

u(t)
)

= −ω2
0u(t) +

α3 · u̇(t) +
R2

2
· sin(2 · u(t)). The initial approximation is u0(t) = u(0) · cos(ω0t) + u̇(0)

ω0
·

sin(ω0t), solution of the equationL
(

u(t)
)
= 0, with initial conditions given by Equation (21).

Then, the expressionN
(

u0(t)
)

contain a combination of the elementary functions cos(2ω0t),

sin(2ω0t), cos(4ω0t), sin(4ω0t). So, the first approximation u1(t) has the form by

u(t) = u(0) · cos ω0t +
u̇(0)
ω0
· sin ω0t + ã0 cos ω0t + b̃0 sin ω0t+

+
Nmax
∑

k=1
ã(5)k · cos(2k ω0t) + b̃(5)k · sin(2k ω0t) ,

(42)

where the convergence-control parameters ω0, ã0, b̃0, ã(5)k , b̃(5)k will be optimally identified.
In this way the approximate analytic solutions of the nonlinear problems Equa-

tions (15), (18), (21), can be constructed, via the OAFM method.

4. Numerical Results and Discussions

In this section, we discuss the accuracy of the OAFM method by taking into consid-
eration the first order approximate solutions given by Equations (40) and (41), where the
index Nmax ∈ {10, 15, 25, 35} is an arbitrary fixed positive integer number.

By means of the Equations (3), (4), (40), for β 6= 0, α1 = 0, α2 = 0, α3 = 0, the
Equations (8), (9), (41), for β = 0, α1 = 0, α2 = 0, α3 = 0,

the Equations (12), (14), (40), for α1 = 0, α2 6= 0, α3 = 0, the Equations (16), (17), (40),
for α1 6= 0, α2 = 0, α3 = 0, and the Equations (19), (20), (42), for α1 = 0, β = 0, α2 = 0,
α3 6= 0, respectively, the approximate closed-form solutions of the Rabinovich system are
well-determined, via the OAFM technique.
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The accuracy of the obtained results is shown in the Figures 1 and 2 (for β = 0.25 6=
0, α1 = 0, α2 = 0, α3 = 0), the Figures 3 and 4 (for β = 0, α1 = 0, α2 = 0, α3 =
0) respectively, by comparison of the above obtained approximate solutions with the
corresponding numerical integration results, computed by means of the fourth-order
Runge-Kutta method using Wolfram Mathematica 9.0 software. On the other hand, the
cases α1 6= 0, α2 6= 0, α3 6= 0 are depicted in Figures 5–10. The convergence-control
parameters C1 = a0 + v(0), Ci = a(4)k−1, B1 = b0 +

v̇(0)
ω0

, Bi = b(4)k−1, i = 2, 3, · · · Nmax,
which appear in Equations (40)–(42) are optimally identified by the least square method for
different values of the known parameter Nmax. As could be observed in the figures there
are the symmetry with respect to the Oz- axis, for β 6= 0, α1 = 0, α2 = 0, α3 = 0 and are
the symmetry with respect to the all coordinate axes, for β = 0, α1 = 0, α2 = 0, α3 = 0. The
Figures 11 and 12 highlight the symmetry of the 3D trajectory.

5 10 15 20
t

-0.5

0.5

v
�

HtL

Figure 1. The auxiliary function v̄(t) given by Equations (40) and (A3) using the initial conditions
x0 = 0.5, y0 = 0.5, z0 = 0.5 and β = 0.25, α1 = 0, α2 = 0, α3 = 0 for Nmax = 25: OAFM solution (with
lines) and numerical solution (dashing lines), respectively.

yHtL

xHtL

zHtL

5 10 15 20
t

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 2. The set of solutions x(t), y(t), z(t) given by Equations (3) and (4) using Equations (40)
and (A3) with the initial conditions x0 = 0.5, y0 = 0.5, z0 = 0.5 and β = 0.25, α1 = 0, α2 = 0, α3 = 0
for Nmax = 25: OAFM solution (with lines) and numerical solution (dashing lines), respectively.
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1 2 3 4 5 6
t

-1.5

-1.0

-0.5

0.5

1.0

1.5

uHtL

Figure 3. The auxiliary function ū(t) given by Equations (41) and (A6) using the initial conditions
x0 = 1.5, y0 = 0.5, z0 = 1.25 and β = 0, α1 = 0, α2 = 0, α3 = 0 for Nmax = 35: OAFM solution (with
lines) and numerical solution (dashing lines), respectively.

yHtL

xHtL

zHtL

1 2 3 4 5 6
t

-1.0

-0.5

0.5

1.0

1.5

Figure 4. The set of solutions x(t), y(t), z(t) given by Equations (8) and (9) using Equations (41)
and (A6) with the initial conditions x0 = 1.5, y0 = 0.5, z0 = 1.25 and β = 0, α1 = 0, α2 = 0, α3 = 0 for
Nmax = 35: OAFM solution (with lines) and numerical solution (dashing lines), respectively.

5 10 15 20
t

-0.4

-0.2

0.2

0.4

uHtL

Figure 5. The auxiliary function ū(t) given by Equations (40) and (A7) using the initial conditions
x0 = 0.5, y0 = 0.5, z0 = 0.5 and β = 0.25, α1 = 0, α2 = 0.05, α3 = 0 for Nmax = 25: OAFM solution
(with lines) and numerical solution (dashing lines), respectively.
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yHtL xHtL

zHtL

5 10 15 20
t

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 6. The set of solutions x(t), y(t), z(t) given by Equations (12) and (14) using Equations (40)
and (A7) with the initial conditions x0 = 0.5, y0 = 0.5, z0 = 0.5 and β = 0.25, α1 = 0, α2 = 0.05, α3 = 0
for Nmax = 25: OAFM solution (with lines) and numerical solution (dashing lines), respectively.

5 10 15 20
t

-0.6

-0.4

-0.2

0.2

0.4

0.6

uHtL

Figure 7. The auxiliary function ū(t) given by Equations (40) and (A8) using the initial conditions
x0 = 0.5, y0 = 0.5, z0 = 0.5 and β = 0.25, α1 = 0.05, α2 = 0, α3 = 0 for Nmax = 25: OAFM solution
(with lines) and numerical solution (dashing lines), respectively.

yHtL
xHtL

zHtL

5 10 15 20
t

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 8. The set of solutions x(t), y(t), z(t) given by Equations (16) and (17) using Equations (40) and
(A8) with the initial conditions x0 = 0.5, y0 = 0.5, z0 = 0.5 and β = 0.25, α1 = 0.05, α2 = 0, α3 = 0 for
Nmax = 25: OAFM solution (with lines) and numerical solution (dashing lines), respectively.
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2 4 6 8 10
t

-0.5

0.5

uHtL

Figure 9. The auxiliary function ū(t) given by Equations (42) and (A9) using the initial conditions
x0 = 1.5, y0 = 0.5, z0 = 1.25 and β = 0, α1 = 0, α2 = 0, α3 = 0.15 for Nmax = 35: OAFM solution
(with lines) and numerical solution (dashing lines), respectively.

yHtL

xHtL

zHtL

1 2 3 4 5 6
t

-1.0

-0.5

0.5

1.0

1.5

Figure 10. The set of solutions x(t), y(t), z(t) given by Equations (19) and (20) using Equations (42)
and (A9) with the initial conditions x0 = 1.5, y0 = 0.5, z0 = 1.25 and β = 0, α1 = 0, α2 = 0, α3 = 0.15
for Nmax = 35: OAFM solution (with lines) and numerical solution (dashing lines), respectively.

-0.5

0.0

0.5

x

-0.5

0.0

0.5

y

0.4

0.6

0.8

z

Figure 11. The points (0.5, 0.5, 0.5) (black), (−0.5,−0.5, 0.5) (blue) and the parametric 3D curve
x = x(t), y = y(t), z = z(t) given by Equations (3) and (4) using Equations (40), (A3) with the initial
conditions x0 = 0.5, y0 = 0.5, z0 = 0.5 and β = 0.25, α1 = 0, α2 = 0, α3 = 0 for Nmax = 25: OAFM
solution (with gray line) and numerical solution (dashing red line), respectively.
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1
.0

1
.2

1
.4

x

-
1

0

1

y

-
1

0

1

z

Figure 12. The points (1.5, 0.5, 1.25) (black), (1.5,−0.5,−1.25) (blue) and the parametric 3D curve
x = x(t), y = y(t), z = z(t) given by Equations (8) and (9) using Equations (41) and (A6) with the
initial conditions x0 = 1.5, y0 = 0.5, z0 = 1.25 and β = 0, α1 = 0, α2 = 0, α3 = 0 for Nmax = 35:
OAFM solution (with gray line) and numerical solution (dashing red line), respectively.

The convergence-control parameters are presented in the section Appendix A.
The influence of the index number Nmax on the values of the relative errors is examined

in Tables 1 and 2. The better approximate analytical solution corresponds to the value
Nmax = 25 for β = 0.25, α1 = 0, α2 = 0, α3 = 0, and Nmax = 35 for β = 0, α1 = 0, α2 = 0,
α3 = 0, respectively. These values were chosen for the efficiency of the solutions shown in
Tables 3–5.

Table 1. Comparison between the relative errors: εv = |vnumerical − v̄OAFM| for β = 0.25, α1 = 0,
α2 = 0, α3 = 0, x0 = 0.5, y0 = 0.5, z0 = 0.5 and different values of the index Nmax; v̄OAFM obtained
from Equations (40) and (A1)–(A3).

t Nmax = 10 Nmax = 15 Nmax = 25

0 1.332267 × 10−15 4.440892 × 10−16 2.646771 × 10−13

7/5 0.0002311701 9.690649 × 10−7 5.424820 × 10−10

14/5 0.0001494743 9.806902 × 10−7 3.389437 × 10−10

21/5 0.0001987102 1.243573 × 10−6 1.842952 × 10−10

28/5 0.0000961699 5.341956 × 10−8 6.126734 × 10−10

7 0.0001210484 2.545193 × 10−6 4.273881 × 10−10

42/5 0.0000661653 1.815027 × 10−6 2.335903 × 10−10

49/5 9.306109 × 10−6 2.151637 × 10−6 5.521745 × 10−10

56/5 0.0000211790 2.055369 × 10−6 4.816658 × 10−10

63/5 0.0001510944 2.318730 × 10−7 7.166223 × 10−11

14 0.0001919623 1.595892 × 10−6 1.900378 × 10−10

Table 2. Comparison between the relative errors: εu = |unumerical − ūOAFM| for β = 0, α1 = 0, α2 = 0,
α3 = 0, x0 = 1.5, y0 = 0.5, z0 = 1.25 and different values of the index Nmax; ūOAFM obtained from
Equations (41) and (A4)–(A6).

t Nmax = 15 Nmax = 25 Nmax = 35

0 9.475753 × 10−14 1.587063 × 10−13 7.716050 × 10−15

3/5 3.504900 × 10−4 3.316779 × 10−5 8.194535 × 10−8

6/5 2.914220 × 10−4 2.904368 × 10−5 7.775160 × 10−8

9/5 4.067788 × 10−4 3.306752 × 10−5 1.002242 × 10−7

12/5 5.020959 × 10−4 3.350227 × 10−5 1.013316 × 10−7

3 2.399299 × 10−4 3.095774 × 10−5 6.350594 × 10−8

18/5 7.499806 × 10−5 3.033164 × 10−5 9.363366 × 10−8

21/5 2.634217 × 10−4 3.698857 × 10−5 7.855941 × 10−8

24/5 1.023441 × 10−4 3.459891 × 10−5 2.951037 × 10−8

27/5 1.061241 × 10−4 3.200782 × 10−5 4.558553 × 10−8

6 1.528191 × 10−4 3.492756 × 10−5 5.671638 × 10−8
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Table 3. Comparison between the approximate analytic solutions ūOAFM given by Equation (40) and
corresponding numerical solution for β = 0.25, α1 = 0, α2 = 0.05, α3 = 0, x0 = 0.5, y0 = 0.5, z0 = 0.5
and the index Nmax = 25; (relative errors: εu = |unumerical − ūOAFM|).

t unumerical ūOAFM εu

0 0.3819660112 0.3819660112 6.566969 × 10−14

8/5 0.5487198876 0.5487198871 4.569626 × 10−10

16/5 0.3347566620 0.3347566624 4.373337 × 10−10

24/5 −0.0474300084 −0.0474300074 9.474402 × 10−10

32/5 −0.3828045448 −0.3828045450 2.316530 × 10−10

8 −0.5042437854 −0.5042437838 1.624801 × 10−9

48/5 −0.3375790298 −0.3375790299 8.105455 × 10−11

56/5 −0.0332606638 −0.0332606646 8.140353 × 10−10

64/5 0.2599740718 0.2599740722 3.694533 × 10−10

72/5 0.4407383794 0.4407383798 4.701539 × 10−10

16 0.4140215615 0.4140215610 5.571915 × 10−10

Table 4. Comparison between the approximate analytic solutions ūOAFM given by Equation (40) and
corresponding numerical solution for β = 0.25, α1 = 0.05, α2 = 0, α3 = 0, x0 = 0.5, y0 = 0.5, z0 = 0.5
and the index Nmax = 25; (relative errors: εu = |unumerical − ūOAFM|).

t unumerical ūOAFM εu

0 0.6180339887 0.6180339887 8.881784 × 10−16

8/5 −0.0321978118 −0.0321978110 7.381383 × 10−10

16/5 −0.5983010647 −0.5983010645 2.040423 × 10−10

24/5 −0.6430063264 −0.6430063265 1.829493 × 10−10

32/5 −0.1556677170 −0.1556677166 3.093710 × 10−10

8 0.4057018841 0.4057018832 9.304779 × 10−10

48/5 0.5626679938 0.5626679941 3.481130 × 10−10

56/5 0.1791865300 0.1791865294 6.380252 × 10−10

64/5 −0.3292856584 −0.3292856577 6.622721 × 10−10

72/5 −0.4774573136 −0.4774573135 1.349091 × 10−10

16 −0.1296948250 −0.1296948251 8.001704 × 10−11

Table 5. Comparison between the approximate analytic solutions ūOAFM given by Equation (42) and
corresponding numerical solution for β = 0, α1 = 0, α2 = 0, α3 = 0.15, x0 = 1.5, y0 = 0.5, z0 = 1.25
and the index Nmax = 35; (relative errors: εu = |unumerical − ūOAFM|).

t unumerical = 15 ūOAFM εu

0 0.3217505543 0.3217505543 1.665334 × 10−16

3/5 −0.4222547682 −0.4222561402 1.371977 × 10−6

6/5 −0.8296437373 −0.8296451162 1.378897 × 10−6

9/5 −0.7776543854 −0.7776557673 1.381888 × 10−6

12/5 −0.3129872607 −0.3129886423 1.381552 × 10−6

3 0.3239044822 0.3239031031 1.379085 × 10−6

18/5 0.6815903593 0.6815889752 1.384109 × 10−6

21/5 0.5989387285 0.5989373473 1.381160 × 10−6

24/5 0.1453366672 0.1453352855 1.381609 × 10−6

27/5 −0.3742949616 −0.3742963398 1.378268 × 10−6

6 −0.5850269138 −0.5850282851 1.371267 × 10−6

5. Conclusions

In the present paper, some geometrical properties of the Rabinovich system are em-
phasized and the approximate analytic solutions were established. These analytic solutions
depend on some convergence-control parameters. A good agreement between the approxi-
mate analytic solutions (using OAFM) and corresponding numerical solutions (using the
fourth-order Runge-Kutta method) was found for symmetric solutions with respect to the
coordinate axes. The performance of the method is characterized by suitable values of
the parameter Nmax as shown in the Tables and Figures. These obtained solutions can be
used in many applications of technological interest. The advantage is to obtain accurate
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solutions for special cases, with just an analytic first integral known, but the unknown
exact solution (as the intersection of the surfaces).
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Appendix A

In the following we will present just the values of the convergence-control parameters
that appear in Equations (40), (41) and (42), respectively.

Appendix A.1. The Case β 6= 0, α1 = 0, α2 = 0, α3 = 0

Example A1. The initial conditions are x0 = 0.5, y0 = 0.5, z0 = 0.5 and β = 0.25.
(a) for Equation (40) with Nmax = 10:

ω0 = 0.0842084063, B1 = −7.7850095373, B2 = 1.1935759266,
B3 = 10.9766341996, B4 = 1.0576315879, B5 = −5.5540946245,
B6 = −1.3916077665, B7 = 1.2287912091, B8 = 0.3774505937,
B9 = −0.0856590499, B10 = −0.0177125387, C1 = 1.2647924166,
C2 = 9.8753733548, C3 = −0.2632330456, C4 = −8.4861481647,
C5 = −1.5913245793, C6 = 2.9461688979, C7 = 0.8568908158,
C8 = −0.3803812033, C9 = −0.1212724374, C10 = 0.0080186284;

(A1)

(b) for Equation (40) with Nmax = 15:

ω0 = 0.0842084063, B1 = −7.8470508367, B2 = 2.2499897809,
B3 = 12.9280127794, B4 = −0.4712356520, B5 = −9.7259134278,
B6 = −1.3690509281, B7 = 4.4434866499, B8 = 1.1492580188,
B9 = −1.1762526193, B10 = −0.3861053828, B11 = 0.1603359895,
B12 = 0.0563660451, B13 = −0.0090989642, B14 = −0.0027442264,
B15 = 2.773923 · 10−6, C1 = 1.6353827930, C2 = 10.5668121613,
C3 = −1.8492817431, C4 = −11.8272674286, C5 = −0.7138152947,
C6 = 7.0224266784, C7 = 1.4476285900, C8 = −2.4512890639,
C9 = −0.7451197226, C10 = 0.4745313849, C11 = 0.1651164438,
C12 = −0.0436858802, C13 = −0.0147119639, C14 = 0.0012846915,
C15 = 0.0004718731;

(A2)
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(c) for Equation (40) with Nmax = 25:

ω0 = 0.0842084063, B1 = 113.1906313266, B2 = 700.5143533516,
B3 = −63.8042262780, B4 = −1726.7156941065, B5 = −727.2541799033,
B6 = 1850.2472856376, B7 = 1458.7090868963, B8 = −1023.3252919624,
B9 = −1371.45280473155, B10 = 192.8265190738, B11 = 763.9333733724,
B12 = 118.7239396963, B13 = −261.2640026833, B14 = −98.9226990064,
B15 = 51.1015243215, B16 = 33.0902447676, B17 = −3.9323646180,
B18 = −5.8957249378, B19 = −0.3704710427, B20 = 0.5357572940,
B21 = 0.0886533581, B22 = −0.0195324516, B23 = −0.0045186018,
B24 = 0.0001056260, B25 = 0.0000356013, C1 = 237.0082862136,
C2 = −181.1626337930, C3 = −1260.1800896233, C4 = −266.1579780903,
C5 = 1943.0958639398, C6 = 1170.9065813163, C7 = −1501.3433857085,
C8 = −1520.5635275053, C9 = 554.5650629146, C10 = 1087.6826289541,
C11 = 26.0903663084, C12 = −475.6102111380, C13 = −128.1837256078,
C14 = 125.1740070213, C15 = 62.1706696066, C16 = −16.9073998070,
C17 = −15.0951778584, C18 = 0.2064815885, C19 = 1.9508776536,
C20 = 0.2353541523, C21 = −0.1178869685, C22 = −0.0237146201,
C23 = 0.0021457461, C24 = 0.0005641598, C25 = 3.317757 · 10−6.

(A3)

Now, for the initial conditions x0 = −0.5, y0 = −0.5, z0 = 0.5 and Nmax = 25, β = 0.25
the convergence-control parameters for the symmetric solution (with respect to the Oz-axis) given
by Equation (40) are given in Equation (A3).

Appendix A.2. The Remarkable Case β = 0, α1 = 0, α2 = 0, α3 = 0

Example A2. The initial conditions are x0 = 1.5, y0 = 0.5, z0 = 1.25.
(a) for Equation (41) with Nmax = 15:

ω0 = 0.1869876739, B1 = −554.4037761129, B2 = 226.7457730999,
B3 = 782.3721160745, B4 = −48.5974967462, B5 = 49.4030334587,
B6 = −957.7117203144, B7 = 283.2006105162, B8 = −159.1917408848,
B9 = 674.7077918425, B10 = 23.5125177445, B11 = −495.1189399730,
B12 = 141.3482748307, B13 = 50.5506946689, B14 = −16.7536940267,
B15 = −0.0634441781, C1 = −93.4671025566, C2 = 1047.0086776914,
C3 = −495.9436000281, C4 = −133.5434805609, C5 = −746.4077270771,
C6 = 236.7019711439, C7 = 421.4165739752, C8 = 177.1891806165,
C9 = 254.4730564674, C10 = −758.0078082782, C11 = 147.8047599915,
C12 = 204.0625242583, C13 = −66.0059654899, C14 = −6.0287025308,
C15 = 1.8659955242;

(A4)
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(b) for Equation (41) with Nmax = 25:

ω0 = 0.1869876739, B1 = 516.1242386938, B2 = −370.2739755607,
B3 = −438.3744282729, B4 = 232.6309328533, B5 = −282.3256743841,
B6 = 387.5617017331, B7 = −47.8049293623, B8 = 162.7251241075,
B9 = −117.3367937705, B10 = 59.7546990652, B11 = −111.8077188524,
B12 = 71.8237012001, B13 = −149.4299059907, B14 = 60.2531991051,
B15 = −76.3055734495, B16 = 113.6663413024, B17 = −16.3900394802,
B18 = 108.9340003143, B19 = −91.5339247140, B20 = −72.0679666456,
B21 = 67.2469830900, B22 = −0.6349607714, B23 = −7.3149658364,
B24 = 0.8138266745, B25 = 0.0661089513, C1 = 54.6954626367,
C2 = −889.6642684770, C3 = 678.0047311577, C4 = −235.8685894546,
C5 = 401.5470307526, C6 = −43.0268550584, C7 = 40.6366633629,
C8 = −169.6938622093, C9 = 23.4686692840, C10 = −115.4282122040,
C11 = 73.1279637248, C12 = −92.7226387177, C13 = 55.3435319845,
C14 = 12.4804646698, C15 = 67.0157693986, C16 = 29.4365871710,
C17 = −9.0367780737, C18 = −25.8911752609, C19 = −126.8226917481,
C20 = 103.3382634787, C21 = 20.0135321168, C22 = −27.9178547423,
C23 = 2.5193238481, C24 = 1.0883135883, C25 = −0.0948041290;

(A5)

(c) for Equation (41) with Nmax = 35:

ω0 = 0.1869876739, B1 = 27.1589347487, B2 = 12.0827987658,
B3 = −31.2924026686, B4 = −6.2126489550, B5 = −8.4925801994,
B6 = −13.9924569422, B7 = 6.0373789169, B8 = 19.7307983361,
B9 = −1.4098763264, B10 = −23.1824059776, B11 = 19.5047102382,
B12 = 18.0959242465, B13 = −20.3437872078, B14 = −2.3657500207,
B15 = 8.0506645554, B16 = 2.1157429592, B17 = 8.2577036885,
B18 = −24.5293827842, B19 = 9.7431739692, B20 = −13.3366939523,
B21 = 21.0972405836, B22 = 1.3733966515, B23 = −10.4215638468,
B24 = −0.6346613181, B25 = 3.7660664321, B26 = −6.3989961662,
B27 = 14.1834202800, B28 = −8.4270149394, B29 = −5.0794721575,
B30 = 6.5727871915, B31 = −1.2212175488, B32 = −0.6570547398,
B33 = 0.2354677108, B34 = −0.0056214482, B35 = −0.0026220746,
C1 = 19.7054442097, C2 = −54.4346582382, C3 = −0.8103617202,
C4 = −1.8697297809, C5 = 5.5410468189, C6 = 4.1456744599,
C7 = 25.1576973040, C8 = −4.3010254027, C9 = −18.3207242611,
C10 = 9.5312211886, C11 = 21.8263082280, C12 = −20.0001654379,
C13 = −14.6586935042, C14 = 21.2392716691, C15 = −9.2030700586,
C16 = 10.5290971616, C17 = −24.7946288753, C18 = 8.9376532008,
C19 = 1.1913707498, C20 = 8.9900769507, C21 = 8.2043548306,
C22 = −16.8096509190, C23 = −1.8558514640, C24 = 8.7834639788,
C25 = −5.1597513330, C26 = 6.9589549263, C27 = −0.6370483091,
C28 = −12.0432828958, C29 = 10.0288355195, C30 = 0.0799417017,
C31 = −2.6893238533, C32 = 0.7569825071, C33 = 0.0695529173,
C34 = −0.0388832605, C35 = 0.0017247410.

(A6)

Now, for the initial conditions: x0 = −1.5, y0 = −0.5, z0 = 1.25 (symmetry with respect to
the Oz-axis) and Nmax = 35, β = 0, x0 = 1.5, y0 = −0.5, z0 = −1.25 (symmetry with respect to
the Ox-axis) and Nmax = 35, β = 0, x0 = −1.5, y0 = 0.5, z0 = −1.25 (symmetry with respect to
the Oy-axis) and Nmax = 35, β = 0, the convergence-control parameters for the symmetric solution
(with respect to the Oz-axis) given by Equation (41) are given in Equation (A6).

Appendix A.3. The Case β = 0.25, α1 = 0, α2 = 0.05, α3 = 0

Example A3. The initial conditions are x0 = 0.5, y0 = 0.5, z0 = 0.5 and Nmax = 25.
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The convergence-control parameters for the approximate analytic solution ū(t) given by
Equation (40) are:

ω0 = 0.0694543429, B1 = −69.5705751030, B2 = −120.8993887304,
B3 = 134.8567394227, B4 = 80.2715486367, B5 = 133.5091139810,
B6 = −1.6079535511, B7 = −107.8296608169, B8 = −89.0630671934,
B9 = −153.5628496068, B10 = 103.8865887516, B11 = 81.7020914138,
B12 = 124.0154016728, B13 = 71.0190829276, B14 = −279.0140436547,
B15 = −47.4832381804, B16 = 186.4926850959, B17 = −1.6034548489,
B18 = −58.0109625378, B19 = 5.9577818217, B20 = 8.6271212497,
B21 = −1.2371738255, B22 = −0.5383432616, B23 = 0.0738473761,
B24 = 0.0093636835, B25 = −0.0006547226, C1 = −65.0212060551,
C2 = 146.9430296120, C3 = 122.0164695356, C4 = −12.7416766751,
C5 = −35.4755424788, C6 = −188.0064243933, C7 = −37.3549977788,
C8 = −42.6527153638, C9 = 125.7222674988, C10 = 160.3454312782,
C11 = −9.0512355641, C12 = 14.4067469635, C13 = −234.7064480557,
C14 = −74.8990251987, C15 = 253.4010415854, C16 = 16.8710869660,
C17 = −113.8065189746, C18 = 7.2254321395, C19 = 24.6401183173,
C20 = −3.1759631665, C21 = −2.4394846206, C22 = 0.3573106958,
C23 = 0.0874588482, C24 = −0.0098968427, C25 = −0.0005010425 .

(A7)

Appendix A.4. The Case β = 0.25, α1 = 0.05, α2 = 0, α3 = 0

Example A4. The initial conditions are x0 = 0.5, y0 = 0.5, z0 = 0.5 and Nmax = 25.
The convergence-control parameters for the approximate analytic solution ū(t) given by

Equation (40) are:

ω0 = 0.0979970641, B1 = −7.86946701639623, B2 = −6.4646829651,
B3 = 8.7356943964, B4 = 16.3328135131, B5 = 5.1958788407,
B6 = −10.8702566280, B7 = −12.6215405753, B8 = −1.5426658313,
B9 = 6.8534549134, B10 = 5.3338415271, B11 = −0.1190016122,
B12 = −2.4166370753, B13 = −1.2668179431, B14 = 0.1849844809,
B15 = 0.4668487148, B16 = 0.1558661112, B17 = −0.0410984637,
B18 = −0.0439753213, B19 = −0.0079302657, B20 = 0.0031640290,
B21 = 0.0015152397, B22 = 0.0000782713, B23 = −0.0000586884,
B24 = −7.908883 · 10−6, B25 = 2.571457 · 10−7, C1 = −1.7097438990,
C2 = 10.0351472420, C3 = 12.4760001691, C4 = −2.2874375788,
C5 = −15.6734001521, C6 = −10.8070637066, C7 = 4.2334673452,
C8 = 10.7552729215, C9 = 4.7764382238, C10 = −2.8811116370,
C11 = −4.1426512477, C12 = −1.1302932517, C13 = 0.9994302741,
C14 = 0.8951531888, C15 = 0.1235578694, C16 = −0.1781342705,
C17 = −0.0986544376, C18 = −0.0025652300, C19 = 0.0143255850,
C20 = 0.0043772770, C21 = −0.0003038516, C22 = −0.0003624506,
C23 = −0.0000398691, C24 = 5.795421 · 10−6, C25 = 7.292742 · 10−7 .

(A8)

Appendix A.5. The Case β = 0, α1 = 0, α2 = 0, α3 = 0.15

Example A5. The initial conditions are x0 = 1.5, y0 = 0.5, z0 = 1.25 and Nmax = 35.
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The convergence-control parameters for the approximate analytic solution ū(t) given by
Equation (42) are:

ω0 = 0.2172006104, B1 = −7.3251070555, B2 = −0.1087849966,
B3 = 4.1113264263, B4 = 4.21373739429, B5 = 1.0687156558,
B6 = −1.5599721276, B7 = −1.43202796290, B8 = 0.7373618607,
B9 = 2.3909438155, B10 = 1.77937304336, B11 = −0.5409997087,
B12 = −2.5317090264, B13 = −2.67997580834, B14 = −1.1492629171,
B15 = 0.6922268586, B16 = 1.59791789658, B17 = 1.3153031289,
B18 = 0.4470104143, B19 = −0.2651316628, B20 = −0.4881158033,
B21 = −0.3386938091, B22 = −0.0985227111, B23 = 0.0470955155,
B24 = 0.0741216873, B25 = 0.0431448916, B26 = 0.0106926238,
B27 = −0.0035675339, B28 = −0.0047137818, B29 = −0.0021456860,
B30 = −0.0004138394, B31 = 0.0000775657, B32 = 0.0000738535,
B33 = 0.0000199500, B34 = 1.929570 · 10−8, B35 = −8.095036 · 10−8,
C1 = 4.8320147836, C2 = 6.1545928815, C3 = 2.7172376117,
C4 = −0.9374420135, C5 = −2.9359918166, C6 = −1.5185091234,
C7 = 0.9997803324, C8 = 1.8049281860, C9 = 0.1894325635,
C10 = −2.1155718115, C11 = −2.9032537901, C12 = −1.5215478343,
C13 = 0.7804328110, C14 = 2.2301227152, C15 = 2.0399788427,
C16 = 0.7655400005, C17 = −0.4739199152, C18 = −0.9603870342,
C19 = −0.7236971824, C20 = −0.2267309158, C21 = 0.1229722256,
C22 = 0.2088434889, C23 = 0.1332553039, C24 = 0.0359490437,
C25 = −0.0146330134, C26 = −0.0212551967, C27 = −0.0111045215,
C28 = −0.0024764806, C29 = 0.0006442642, C30 = 0.0007496569,
C31 = 0.0002808121, C32 = 0.0000431036, C33 = −4.960082 · 10−6,
C34 = −3.110982 · 10−6, C35 = −3.647933 · 10−7 .

(A9)
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