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Abstract: Based on some geometrical properties (symmetries and global analytic first integrals) of
the Rabinovich system the closed-form solutions of the equations have been established. The chaotic
behaviors are excepted. Moreover, the Rabinovich system is reduced to a nonlinear differential
equation depending on an auxiliary unknown function. The approximate analytical solutions are
built using the Optimal Auxiliary Functions Method (OAFM). The advantage of this method is to
obtain accurate solutions for special cases, with only an analytic first integral. An important output is
the existence of complex eigenvalues, depending on the initial conditions and physical parameters
of the system. This approach was not still analytically emphasized from our knowledge. A good
agreement between the analytical and corresponding numerical results has been performed. The
accuracy of the obtained results emphasizes that this procedure could be successfully applied to more
dynamic systems with these geometrical properties.

Keywords: optimal auxiliary functions method; Rabinovich system; symmetries; Hamilton—-Poisson
realization; periodical orbits
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1. Introduction

The Rabinovich system was first studied in [1] with the analysis of a concrete realiza-
tion in a magnetoactive non-isothermal plasma. This system is a dynamical system of three
resonantly coupled waves, parametrically excited [2].

There are some previous papers where are pointed out the relevance for engineering
applications of the Rabinovich system, such as: in [3] is reported the existence of hidden
attractors and applied to coupled Chua circuits; the integrals of motion were characterized
by using the method of characteristic curves in [4]; some relevant dynamical and geometri-
cal properties [5]; the Darboux polynomials [6]. Numerical simulations were investigated
in [7] showing that the Rabinovich chaotic system can be regulated to its equilibrium points
in the state space.

The synchronization or optimization of nonlinear system performance, secure com-
munications, and other applications in electrical engineering or medicine are based on
the study of dynamical systems. Ref. [8] explored the stabilization of the T system via
linear controls, and [9] studied the Rikitake two-disk dynamic system and applied it in
modeling the reversals of the Earth’s magnetic field [10,11]. Some geometrical properties
of the dynamical systems: the integral deformations, the equilibria points, Hamiltonian
realization was analyzed in [12-39].

The symmetry represents an important geometrical property of the dynamical system.
As it is well known, a dynamic system admits symmetry with respect to the origin point
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0(0,0,0) or with the Oz— axis or the plan z = 0 if it is invariant under the transformation
(x,y,z) = (—x,—y,—z), respectively (x,y,z) — (—x,—y,z)and (x,y,2) — (x,y,—z).

The paper is organized as follows: Section 2 provides a brief description of the ge-
ometrical properties and the closed-form solutions of the Rabinovich system. Section 3
is dedicated to building approximate analytic solutions using the OAFM technique. The
presented analysis and the corresponding numerical results are discussed in the Numerical
results and Discussions sections. Here, we observe the importance and precision of the
method by means of the convergence-control parameters. The accuracy and the good
agreement between the results are highlighted in the Conclusion section.

2. The Rabinovich System
2.1. Global Analytic First Integrals and Hamilton-Poisson Realization

The Rabinovich system has the form (see [3-7,12,28,29,40]):

X =yz—wa1x+ By
y=-—x-z—wmy+px, )
Z=Xx-Y— a3z

where the unknown functions x, y and z depend on t > 0, (B, a1, ap, a3) € R* and x
denotes the derivative of the function x with respect to ¢.

Remark 1. Is easy to see that the considered system admits a symmetry with respect to Oz- axis,
for B # 0 and symmetries with respect to Oz, Ox, Oy axes, for B = 0, respectively.

In this section, we also recall some geometrical properties of the system (1) [12].

The global analytic first integrals of the Rabinovich system are obtained in [40].

The considered system has a Hamilton-Poisson realization with the Hamiltonian and the
Casimir given by H(x,y,z) = 1(x? —22) and C(x,y,z) = (x> + 2y? + 22), respectively,
forB=0a =0 a0 =0, a3 = 0; H(x,y,2) = —bx?+ By 4 22 and C(x,y,2) =
—ﬁxz— ﬁy2+z,for[3 #0,00 =00, =0,a3 =0.

There exist three isolated cases:

H(x,y,z) = x2 — 22 —2Bz, for e R, a1 =0,a2 #0,a3 =0;

H(x,y,z) = y2 +z2 — 2Bz, for e R, a1 #0, 00 =0, 03 = 0;

H(x,y,z) = x2 —i—yz,forﬁ =0,a1=0,a =0, a3 #0.

Remark 2. For the initial conditions

x(0)=x, y(0)=yo, 2(0)=z2), 2

the phase curves of dynamics (1) are the intersections of the surfaces
b b+ p = B+ By pab and g — gt tz = —gpxd - b+
zo, forfp#0, a1 =0, ap =0, a3=0;

xX2—z2=x3—-zF and X*4+22+22 =x3+205+25, forp=0, a =0,
ay =0, az =0, respectively.

2.2. Closed-Form Solutions

In this section, we establish the closed-form solutions of the system Equation (1) using
previous results, considering the real values for the physical parameters as 8, a1, az, a3.

@D B#0,a1=0a=0a3=0.

Using the transformations:

B 1+02(t) ®)
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where R = 4\/[% -(Hg —2p*-Cs+ B3), Hp = —gx% + gy% + Bz5, Cp = —ﬁx% - ﬁy% + zq,
v(t) is an unknown smooth function.
The third equation from Equation (1) yields to

20(t)

x(t) = “Tro@ 4
Now, using the first equation from Equation (1) we obtain:
2
010) (14 2%(1)) = 20(8) - ((0)* + g5 -9(0)- (1= (1) + 3 -2(0)- (142%(1)) =0. 9

Using the initial conditions Equation (2) and the relations Equations (3) and (4) the
initial conditions v(0) and ©(0) become:

S SCE I __xo_< 1—4/3(20—5)>
@_J1+%wmm’(m_ T awep) @

Remark 3. If the function v(t) is the exact solution of the problem given by Equations (5) and (6),
then the relations Equations (3) and (4) give closed-form solution of the system Equation (1). If the
function v(t) is an analytic approximate solution of the problem given by Equations (5) and (6), then
the relations Equations (3) and (4) give approximate closed-form solution of the system Equation (1).

(i B=0,01=0,a,=0,a3 =0.

For this particular case, the system (1) reduces to

X=yz
y = —X-zZ . (7)
Z=x-y
Making the transformations:
=si .R.—1
{ x(t) = sign(xp) - R 1+(tu)2(t) ©
— / . . u ’
y(t) = sign(yo) - R =25

where R = /x5 + y% and u(t) is an unknown smooth function, then the second equation
from Equation (7) yields to

_ _sign(yo) ~ u(t)
2(t) = _sign(xg) 14 u2(t) ®)

Now, using the third equation from Equation (7) we obtain:

2u(t)

_m.(u(t))2+R2~u(t) =0. (10)

ii(t)

Using the initial conditions Equation (2) and the relations Equations (3) and (4) the
initial conditions u(0) and (0) become:

u(0) = Zg:ggg %2 , 1(0) = —sign(z) - zo - (1+u2<0)). (11)

Remark 4. If the function u(t) is the exact solution of the problem given by Equations (10) and (11),
then the relations Equations (8) and (9) give closed-form solution of the system Equation (7). If the
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function v(t) is an analytic approximate solution of the problem given by Equations (5) and (6), then
the relations Equations (3) and (4) give approximate closed-form solution of the system Equation (7).

(i) BER, a1 =0,a2 #0,a3 = 0.
The closed-form solutions can be put in the following form:

{XW:Rqﬁ%

u2 ’
2(t) = —p+ R Ty

(12)

where R = 1/ (z0 + B)? — x3, for (zo + B)> — x5 > 0, and

_ . i)
x(t) =R- T—u2(f) ) (13)
2(t) = —B+R - 2l

where R = \/x3 — (zg + )2, for x§ — (z0 + B)* > 0, respectively.
Then the third equation from Equation (1) yields to

20(t)

y():71—u2(t)' (14)

The unknown smooth function u(t) is the solution of the nonlinear problem:

() - (1 —u?(8) +2u(t) - (1(t))* + R - u(t) - (1 +u? ( ))—
{—zﬁ'R'u(f)'(l—“())Jr“z (1—u?(t))-u(t) = (15)
u(0) = sign(xo) ZTBTR u(0) =2 - (1—u%(0)) .

(iv) IBER,Dél 7&0,062:0,063:0.

The closed-form solutions can be put in the following form:

{ya>=R~ﬁﬁ%

, (16)

2(t) = p+ R 17500

where R = /(zo — B)? + y3. Then the third equation from Equation (1) yields to

x(t) = —% . (17)
The unknown smooth function u(t) is the solution of the nonlinear problem:
ii(t) - (L+u?(t)) —2u(t) - (u(t)>+R>-u(t)- (1 —u (t))+
+2B-R-u(t) - (1+u?(t) +ag - (1+u?(t)) - u(t) = (18)

u(0) = [ xr=f L #(0) = =% (1+1%(0)) .

v) B=0,a1=0,a,=0,a3 #0.

The closed-form solutions can be put in the following form:

x(t) = R-cos(u(t))
{yur=Rsmwu» / (19
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where R = /x3 + y3. Then the first equation from Equation (1) yields to

z(t) = —u(t) . (20)
The unknown smooth function u(t) is the solution of the nonlinear problem:
i(t) +az-u(t) + B - sin(2-u(t) =0 -
u(0) = arctanZ—g , u(0) = —zp.

In the literature, there are several analytical methods for solving the nonlinear dif-
ferential problem is given by Equations (5), (6), (10), (11), (15), (18) and (21) such as: the
Optimal Homotopy Asymptotic Method (OHAM) [41-43], the Optimal Homotopy Per-
turbation Method (OHPM) [44,45], the Optimal Variational Iteration Method (OVIM) [46],
the Optimal Iteration Parametrization Method (OIPM) [47], the Polynomial Least Squares
Method [48], the Least Squares Differential Quadrature Method [49], the Multiple Scales
Technique [50], the Function Method [51], the Homotopy Perturbation Method (HPM) and
the Homotopy Analysis Method (HAM) [52], the Variational Iteration Method (VIM) [53].

In this work the approximate analytic solutions of the nonlinear differential problem
given by Equations (5), (6), (10), (11), (15), (18) and (21) are analytically solved using the
Optimal Auxiliary Functions Method (OAFM).

3. Approximate Analytic Solutions via OAFM

We introduce the basic ideas of the OAFM by considering Equation (5) with the initial
conditions given by Equation (6) in general form as in [43,54]:

c [@(t)] +e()+ N [w)] =0, 22)

where £ is a linear operator, g is a known function and N is a given nonlinear operator, ¢
denotes the independent variable and the approximate solution (t) is written with just
two components in the form:

5(t>200(t)—|-01(t,ci), i=1,2,...,5s. (23)

The initial approximation v (t) and the first approximation vy (¢, C;) will be determined
as follows.
Firstly, the Equation (22) becomes

Lloo(t)] + £ [or(t,C)| + (1) + N [oo() + o1 (£,C)| = 0. (24)
The linear operator £ could be chosen by the form [54]:
E(U(t)) = 5(t) + who(t), (25)
where wp > 0 is an unknown parameter.

From Equation (24) using Equation (25) and initial conditions Equation (6), the initial
approximation vy(f) is solution of the problem (g(t) = 0):

4p
4 wio(t) =0, 0(0) = M
() + wyo(t) = 0, 0(0) \J 1+2% . (20— p)° (26)

o X0 ({ 1m% (0B
vor= G+1+?wm—m>'
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namely:

3(0)

vo(t) = v(0) - cos wot + o - sin wt. (27)
0

The nonlinear operator N/ (v(t)) is obtained from Equations (5) and (25):

N (0(8)) = ~wholt) +5(8) - 02(1) — 20(8) - (2(1)* + 1162;2 o) (1= P(0) + 5 o) (1A(),  @9)
and can be expanded in the form
N[Uo(t) +o1(t,CG)| =
= /\/[vo(t)} +) l(li,lcl)./\f(k) {vo(t)} 29

By means of the Equations (27) and (28) it is obtain

N(vo(t)> = M - coswpt + N - sinwgt + My - cos 3wpt + Ny - sin 3wyt , (30)

where
5M 2 2
M = —wiM — %(M2 +N?) + 16{42;1(4 —3M? —3N?) + %(4%1\/{2 +3N?),
5N 2 2
Ni = —wiN — 4‘”0 (M2 4 N?) + 54/;!(4 —3M? —3N?) + %(4 —3M? +3N?),
Mw} R’M RM
M, = —%(31\12 — M?) + 64—[32(3N2 - M)+ == (M? —3N?), (31)
_ Nw§ 2y RPN » 2y, RN 2 2
Np = _T(N —-3M )+64—IBZ(N —3M")+ —(3M~ - N-),
M=9(0), N= °0 .
wo
Using Equations (24), (25) and (27)—(29), the first approximation v (t) is solution of
the problem:
£lon(t,C)| + Ar[eo(t), G A [eo()] + -
+Az {Uo(f),cj} =0,
(%] (0, Cl) =0 ’ z>1(0, Cl) = 0, (33)

where A; and Aj; are two arbitrary auxiliary functions depending on the initial approx-
imation vy(t) and several unknown parameters C; and C;, i = 1, 2,..., p,j = p+1,
p+2,...,s

Taking into account of the Equations (32), (25) and (30), the first approximation is
obtained from the equation:

1 + w3y + Az(cos wot, sin wot, cos 3wyt sin 3wot, Cj) + A1 (cos wot, sin wot, cos 3wpt, sin 3wot, C;) X

4
X (M - cos wyt + Ny - sin wpt + My - cos 3wyt + Nj - sin3wgt) = 0, (34)

with the initial conditions
v1(0) =0, v1(0) =0. (35)

There is an opportunity to choose the optimal auxiliary functions A; and A, in the
following forms:

Nmaxfl
Aq [vo(t),Cl} = 2 a,(cl) - cos(2k + 1)wot + b,ﬁl) -sin(2k + 1)wot , (36)
k=1
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Nmax 2 2
A, {vo(t), D]} = Y 0P cos(2k + 1)wot + b - sin(2k + 1)awot, (37)
k=1

where the convergence-control parameters C; € {a,(cl)‘ k=1, Nyax — 1} U {b,gl)
1 Niax — }
D; € {ak ‘ k =1, Nyax} U {b,gz)‘ k =1, Nyax}, Njax > 2 is an arbitrary fixed integer

number,
or

Arfoo(t), G| =0,

Nﬂlak
As {vo(t),D]} As [Uo } Z ak - cos( 2k+1)w0t+b( ) -sin(2k + 1)wqt ,

where the convergence-control parameters D; € {ak2 ‘ k=1, Nyax } U {b,gz) k=1, Nyax},
or yet
Aq {Uo(t), Cl} = Cq cos wpt + Cy sinwyt ,

Ay [Uo(t), C]} = C3 cos 3wyt + C4 sin 3wyt,

and so on.
If the auxiliary functions A; and A; are given by Equations (36) and (37) then
Equation (32) becomes:

Nmax
1 + wivy = Z af’) - cos(2k + 1)wot + b]((3) -sin(2k + 1)wot , (38)
k=1
with the initial conditions given in Equation (35), whose solution is:

anﬂY

v1(t,C;) = ag cos wot + by sinwpt + Y ak - cos(2k + 1)wqt + bl(<4) -sin(2k + 1)wot , (39)
k=1
where
Nmax 4) NWlﬂX ( )
a=—Y a¥  by=—Y (2k+1)b}
k=1 k=1

with the unknown parameters “I(c ), b,(( ), al(f), b(4) depending on the convergence-control

parameters a(1> b(l) ”IE ), b,E ), so will be optimally identified.
Finally, the approx1mate analytic solution is obtained from the Equation (23) in the
form:

o(t) =vo(t) +v1(t,Ci), i=1,2,...,5, (40)

with vg(t) and vy (t, C;) given by Equations (27) and (39), respectively.
Analogue, in the particular case § = 0, a1 = ap = a3 = 0, the Equation (10) could be
rewrite in the following form:

() - (T4+u?(t) —2u(t) - (u(t)* + R*-u(t) - (1+u>(t)) =0.

So, choosing the linear operator E(u(t)) = ii(t) + wiu(t) and the nonlinear op-
erator N(u(t)) = —cRu(t) + i) - u2(t) — 2u(t) - (1(t))® + R® - u(t) - (1 + u?(t)), the

approximate analytic solution #(t) of the Equation (10) with the initial conditions given by
Equation (11) can be obtained via OAFM technique in the form:
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_ u(0) . . s
u(t) = u(0) - cos wot + o sin wot + dg cos wot + by sin wpt+
N (a) T “n
+ Y a4 - cos(2k 4 1)wot 4 by - sin(2k 4 1)wot ,

k=1
where the convergence-control parameters wy, dp, bo, d,(f), 13,£4) will be optimally identified.
Similarly, for the cases a1 # 0, ap = a3 = 0 or ap # 0, a1 = a3 = 0 respectively, the
linear operator can be
L(u(t)) = i+ - u(t).

Then, the corresponding nonlinear operator N (u(t)) is obtained from Equations (15)
and (18), respectively, as:

Nu(t)) = —wd -u(t) —ii(t) - u?(t) +2u(t) - (t(t))* + R* - u(t) - (1 + u?(t))—

=2B-R-u(t) - (1—u?(t) +ag - (1—u?(t)) - u(t)

and
N(u(t)) = —wi -u(t) +ii(t) - u?(t) —2u(t) - (w(t))* + R* - u(t) - (1 — u(t))+

428 - R-u(t) - (14 u?(t)) +ar - (14 u?(t) - u(t),

respectively.

Therefore, by applying the same procedure it obtains that the expression N (u(t))
is a combination of the elementary functions cos(wyt), sin(wot), cos(3wpt), sin(3wpt) in
the both cases. So, the first approximation u1(t) has the form by Equation (39) and the
first-order approximate analytic solution i(t) has the form by Equation (40).

In the case a3 # 0, B = a1 = ap = 0, the linear operator is ﬁ(u(t)) = ii(t) + wiu(t)
and the nonlinear operator is deduced from Equation (21) as N/ (u(t)) = —w%u(t) +

2 ,
ag - u(t) + R? -sin(2 - u(t)). The initial approximation is uo(t) = u(0) - cos(wot) + LI

wo

sin(wyt), solution of the equation £ (u (t)) = 0, with initial conditions given by Equation (21).

Then, the expression N/ (uo (t)) contain a combination of the elementary functions cos(2wyt),
sin(2wyot), cos(4wot), sin(4wpt). So, the first approximation u (t) has the form by

u(t) = u(0) - cos wot + 9 - sin wot + dg cos wot + by sin wot+
0
. (42)
+ ¥ a7 - cos(2k wot) + b]gS) -sin(2k wot) ,

) 36

where the convergence-control parameters wy, o, by, a,’, by’ will be optimally identified.
In this way the approximate analytic solutions of the nonlinear problems Equa-
tions (15), (18), (21), can be constructed, via the OAFM method.

4. Numerical Results and Discussions

In this section, we discuss the accuracy of the OAFM method by taking into consid-
eration the first order approximate solutions given by Equations (40) and (41), where the
index Ny, € {10, 15, 25, 35} is an arbitrary fixed positive integer number.

By means of the Equations (3), (4), (40), for 8 # 0, a1 = 0, ap = 0, a3 = 0, the
Equations (8), (9), (41), for  =0,a1 =0, =0,a3 =0,

the Equations (12), (14), (40), for a1 = 0, ap # 0, a3 = 0, the Equations (16), (17), (40),
for a1 # 0, ap = 0, a3 = 0, and the Equations (19), (20), (42), fora; = 0,8 =0, a2 =0,
a3 # 0, respectively, the approximate closed-form solutions of the Rabinovich system are
well-determined, via the OAFM technique.
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The accuracy of the obtained results is shown in the Figures 1 and 2 (for f = 0.25 #
0,41 = 0,a = 0, a3 = 0), the Figures3and 4 (for § = 0, a1 = 0, a2 = 0, a3 =
0) respectively, by comparison of the above obtained approximate solutions with the
corresponding numerical integration results, computed by means of the fourth-order
Runge-Kutta method using Wolfram Mathematica 9.0 software. On the other hand, the
cases w1 # 0, ap # 0, a3 # 0 are depicted in Figures 5-10. The convergence-control

parameters C; = ag +v(0), C; = ”154—)1' B1 = by + @, B; = b,(i)l, i =2,3 - Ny,
which appear in Equations (40)—(42) are optimally identified by the least square method for
different values of the known parameter Ny,x. As could be observed in the figures there
are the symmetry with respect to the Oz- axis, for § # 0, &1 = 0, 2 = 0, a3 = 0 and are
the symmetry with respect to the all coordinate axes, for =0, a1 =0, ap =0, a3 = 0. The

Figures 11 and 12 highlight the symmetry of the 3D trajectory.

v(t)

0.5, /

Figure 1. The auxiliary function 9(¢) given by Equations (40) and (A3) using the initial conditions
x0 =0.5,y0=0.5,z0 =05and B = 0.25, 41 = 0, ap = 0, a3 = 0 for Nyzx = 25: OAFM solution (with
lines) and numerical solution (dashing lines), respectively.

1.5 z(t) y(t)

| \
0.5

\‘ ’/ \\\ / t
- 0 . 5 > \\ I'/ > \\

-1.0
-1.5 x(t)

Figure 2. The set of solutions x(t), y(t), z(¢) given by Equations (3) and (4) using Equations (40)
and (A3) with the initial conditions xg = 0.5, yp = 0.5, z9 = 0.5and p = 0.25, 41 = 0,ap = 0,43 =0
for Nyay = 25: OAFM solution (with lines) and numerical solution (dashing lines), respectively.
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(t)
1.5 N

1.0
0.5

—0.51 N\
-1.0p O\ .
-1.5 S

Figure 3. The auxiliary function #(t) given by Equations (41) and (A6) using the initial conditions
x9=15,y9 =05,z9g =1.25and B =0, a1 =0, ap =0, a3 = 0 for Ny;qx = 35: OAFM solution (with
lines) and numerical solution (dashing lines), respectively.

L.5
1.0
0.5

Figure 4. The set of solutions x(t), y(t), z(t) given by Equations (8) and (9) using Equations (41)
and (A6) with the initial conditions xg = 1.5, y9 = 0.5,zg = 1.25and p =0, a1 =0, = 0, a3 = 0 for
Niax = 35: OAFM solution (with lines) and numerical solution (dashing lines), respectively.

''''

0.2 /

-0.2
-0.4

., o
'''''

Figure 5. The auxiliary function #(f) given by Equations (40) and (A7) using the initial conditions
x9 =0.5,y0 =0.5,z9 =0.5and B = 0.25, a1 = 0, ay = 0.05, a3 = 0 for Ny;ux = 25: OAFM solution
(with lines) and numerical solution (dashing lines), respectively.
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-1.0
15 y(® x(t)

Figure 6. The set of solutions x(t), y(t), z(t) given by Equations (12) and (14) using Equations (40)
and (A7) with the initial conditions xg = 0.5, 9 = 0.5, z9 = 0.5and § = 0.25, a1 =0, ap = 0.05, a3 =0
for Ny = 25: OAFM solution (with lines) and numerical solution (dashing lines), respectively.

(t)
06, - .

0.2t ° f \ /

-0.2 _
04\ /
-0.6

Figure 7. The auxiliary function #(t) given by Equations (40) and (A8) using the initial conditions
xp = 0.5,y9 =0.5,zp = 0.5 and B = 0.25, a1 = 0.05, ap = 0, a3 = O for Nyax = 25: OAFM solution
(with lines) and numerical solution (dashing lines), respectively.

1.5 z(t)

~1.0 \
y(t)

-1.5 x(t)

Figure 8. The set of solutions x(t), y(t), z(t) given by Equations (16) and (17) using Equations (40) and
(A8) with the initial conditions xg = 0.5, yo = 0.5, zg = 0.5and B = 0.25, a1 = 0.05, ap = 0, a3 = 0 for
Niax = 25: OAFM solution (with lines) and numerical solution (dashing lines), respectively.
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u(t)

0.5

-0.5

Figure 9. The auxiliary function #(t) given by Equations (42) and (A9) using the initial conditions
x9 =15,y9=05z9=125and f = 0,27 =0, ap = 0, a3 = 0.15 for Ny;;ax = 35: OAFM solution
(with lines) and numerical solution (dashing lines), respectively.

1.5

1.0

0.5\

,f——- "—-_\~
\, / haN ” S~
4 N, ” S
——

N, ( ) 7 N, ’
\\\ \ /’, N’
~, vd
S’

-0.5
-1.0

| 2 3 4

N

z(t) y(©)

N

Figure 10. The set of solutions x(t), y(t), z(t) given by Equations (19) and (20) using Equations (42)
and (A9) with the initial conditions xg = 1.5, 9 = 0.5,z9 = 1.25and p =0, a3 = 0,0, = 0, a3 = 0.15
for Ny = 35: OAFM solution (with lines) and numerical solution (dashing lines), respectively.

Figure 11. The points (0.5,0.5,0.5) (black), (—0.5,—0.5,0.5) (blue) and the parametric 3D curve
x =x(t), y = y(t), z = z(t) given by Equations (3) and (4) using Equations (40), (A3) with the initial
conditions xg = 0.5, g = 0.5,z = 0.5and B = 0.25, a1 = 0, ap = 0, a3 = 0 for Nyy = 25: OAFM
solution (with gray line) and numerical solution (dashing red line), respectively.
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Figure 12. The points (1.5,0.5,1.25) (black), (1.5, —0.5, —1.25) (blue) and the parametric 3D curve
x = x(t),y = y(t), z = z(t) given by Equations (8) and (9) using Equations (41) and (A6) with the
initial conditions xg = 1.5, y9g = 0.5, z0 = 1.25and B = 0, a1 = 0, ap = 0, a3 = 0 for Nyax = 35:
OAFM solution (with gray line) and numerical solution (dashing red line), respectively.

The convergence-control parameters are presented in the section Appendix A.

The influence of the index number N,;,;, on the values of the relative errors is examined
in Tables 1 and 2. The better approximate analytical solution corresponds to the value
Nypax =25for p=0250a7 =0,a2 =0,a3 =0, and Ny =35for f=0,a1 =0, a0 =0,
a3 = 0, respectively. These values were chosen for the efficiency of the solutions shown in
Tables 3-5.

Table 1. Comparison between the relative errors: €, = |Vumerical — 90Arm| for p = 0.25, a1 = 0,
ap =0,a3 =0,x9 = 0.5,y = 0.5, zg = 0.5 and different values of the index Nyx; 90 4App Obtained
from Equations (40) and (A1)—(A3).

t Nmax =10 max = 15 max = 25

0 1.332267 x 10715 4440892 x 10716 2.646771 x 10~13
7/5 0.0002311701 9.690649 x 10~7 5.424820 x 10710
14/5 0.0001494743 9.806902 x 1077 3.389437 x 10710
21/5 0.0001987102 1.243573 x 10~° 1.842952 x 1010
28/5 0.0000961699 5.341956 x 10~8 6.126734 x 10710

7 0.0001210484 2.545193 x 10~° 4273881 x 10710
42/5 0.0000661653 1.815027 x 10~ 2.335903 x 10710
49/5 9.306109 x 10~° 2.151637 x 10~° 5.521745 x 10~10
56/5 0.0000211790 2.055369 x 10° 4.816658 x 1010
63/5 0.0001510944 2.318730 x 1077 7.166223 x 10~ 1
14 0.0001919623 1.595892 x 10~° 1.900378 x 10~10

Table 2. Comparison between the relative errors: €, = |U,ymerical — Boarm| for p=0,a1 = 0,2, =0,
a3 =0,x9 = 1.5, y9 = 0.5, zp = 1.25 and different values of the index Nyax; 1o oArpm Obtained from

Equations (41) and (A4)—(A6).

t Npax = 15 Nyax = 25 Nypax = 35

0 9.475753 x 10~ 14 1.587063 x 10~13 7.716050 x 1015
3/5 3.504900 x 10~ 3.316779 x 1075 8.194535 x 108
6/5 2.914220 x 1074 2.904368 x 1075 7.775160 x 108
9/5 4.067788 x 10~4 3.306752 x 107> 1.002242 x 107
12/5 5.020959 x 104 3.350227 x 107> 1.013316 x 1077

3 2.399299 x 10~ 3.095774 x 1075 6.350594 x 108
18/5 7.499806 x 107> 3.033164 x 1075 9.363366 x 108
21/5 2.634217 x 1074 3.698857 x 1075 7.855941 x 108
24/5 1.023441 x 10~ 3.459891 x 107> 2.951037 x 10~8
27/5 1.061241 x 10™* 3.200782 x 107> 4558553 x 1078

6 1.528191 x 10~* 3.492756 x 1075 5.671638 x 10~8
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Table 3. Comparison between the approximate analytic solutions #ipsrp given by Equation (40) and
corresponding numerical solution for p = 0.25, a1 = 0, ap = 0.05, 3 = 0, x9 = 0.5, 9 = 0.5,29 = 0.5
and the index Ny,x = 25; (relative errors: €, = |Uyymerical — BOAFM])-

t Unumerical HOAFM €y

0 0.3819660112 0.3819660112 6.566969 x 1014
8/5 0.5487198876 0.5487198871 4569626 x 10710
16/5 0.3347566620 0.3347566624 4.373337 x 10710
24/5 —0.0474300084 —0.0474300074 9.474402 x 10710
32/5 —0.3828045448 —0.3828045450 2.316530 x 1010

8 —0.5042437854 —0.5042437838 1.624801 x 107
48/5 —0.3375790298 —0.3375790299 8.105455 x 101
56/5 —0.0332606638 —0.0332606646 8.140353 x 10710
64/5 0.2599740718 0.2599740722 3.694533 x 10710
72/5 0.4407383794 0.4407383798 4.701539 x 10~10

16 0.4140215615 0.4140215610 5571915 x 10~10

Table 4. Comparison between the approximate analytic solutions iip 4rp given by Equation (40) and
corresponding numerical solution for f = 0.25, a3 = 0.05, ap = 0,43 = 0, x9 = 0.5, 9 = 0.5, 29 = 0.5
and the index Nyx = 25; (relative errors: €, = |Uyymerical — BOAFM])-

t Unymerical HOAFM €y

0 0.6180339887 0.6180339887 8.881784 x 10716
8/5 —0.0321978118 —0.0321978110 7.381383 x 10710
16/5 —0.5983010647 —0.5983010645 2.040423 x 10710
24/5 —0.6430063264 —0.6430063265 1.829493 x 1010
32/5 —0.1556677170 —0.1556677166 3.093710 x 10710

8 0.4057018841 0.4057018832 9.304779 x 10~10
48/5 0.5626679938 0.5626679941 3.481130 x 10710
56/5 0.1791865300 0.1791865294 6.380252 x 1010
64/5 —0.3292856584 —0.3292856577 6.622721 x 10710
72/5 —0.4774573136 —0.4774573135 1.349091 x 10~10

16 —0.1296948250 —0.1296948251 8.001704 x 10~ 11

Table 5. Comparison between the approximate analytic solutions iipsrpy given by Equation (42) and
corresponding numerical solution for § = 0,41 = 0,4y = 0, a3 = 0.15, xg = 1.5, 9 = 0.5, zg = 1.25
and the index Ny, = 35; (relative errors: €, = |Uyymerical — BOAFM])-

t Unumerical = 15 HOAFM €u

0 0.3217505543 0.3217505543 1.665334 x 10~16
3/5 —0.4222547682 —0.4222561402 1.371977 x 106
6/5 —0.8296437373 —0.8296451162 1.378897 x 10~°
9/5 —0.7776543854 —0.7776557673 1.381888 x 10~°
12/5 —0.3129872607 —0.3129886423 1.381552 x 10~°

3 0.3239044822 0.3239031031 1.379085 x 10~°
18/5 0.6815903593 0.6815889752 1.384109 x 10~°
21/5 0.5989387285 0.5989373473 1.381160 x 10~¢
24/5 0.1453366672 0.1453352855 1.381609 x 10~°
27/5 —0.3742949616 —0.3742963398 1.378268 x 106

6 —0.5850269138 —0.5850282851 1.371267 x 106

5. Conclusions

In the present paper, some geometrical properties of the Rabinovich system are em-
phasized and the approximate analytic solutions were established. These analytic solutions
depend on some convergence-control parameters. A good agreement between the approxi-
mate analytic solutions (using OAFM) and corresponding numerical solutions (using the
fourth-order Runge-Kutta method) was found for symmetric solutions with respect to the
coordinate axes. The performance of the method is characterized by suitable values of
the parameter Ny, as shown in the Tables and Figures. These obtained solutions can be
used in many applications of technological interest. The advantage is to obtain accurate
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solutions for special cases, with just an analytic first integral known, but the unknown
exact solution (as the intersection of the surfaces).
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Appendix A

In the following we will present just the values of the convergence-control parameters
that appear in Equations (40), (41) and (42), respectively.

Appendix A.1. The Case B # 0,01 =0, 0p =0, 03 =0

Example Al. The initial conditions are xg = 0.5, yg = 0.5, z9 = 0.5 and = 0.25.
(a) for Equation (40) with Nyax = 10:

wp = 0.0842084063, By = —7.7850095373, By = 1.1935759266,

B3 = 10.9766341996, By = 1.0576315879, Bs = —5.5540946245,

Bg = —1.3916077665, By = 1.2287912091, Bg = 0.3774505937,

Bg = —0.0856590499, B1g = —0.0177125387, C; = 1.2647924166, (A1)
Cy =9.8753733548, C3 = —0.2632330456, C; = —8.4861481647,

Cs = —1.5913245793, Cg = 2.9461688979, C; = 0.8568908158,

Cg = —0.3803812033, C9 = —0.1212724374, C1p = 0.0080186284;

(b) for Equation (40) with Nyax = 15:

wo = 0.0842084063, B; = —7.8470508367, B, = 2.2499897809,
B; = 12.9280127794, B, = —0.4712356520, Bs = —9.7259134278,

Bg = —1.3690509281, B, = 4.4434866499, Bg = 1.1492580188,

By = —1.1762526193, Byy = —0.3861053828, By; = 0.1603359895,

Bia = 0.0563660451, B3 = —0.0090989642, By = —0.0027442264,

Bys = 2.773923 - 1076, C; = 1.6353827930, C, = 10.5668121613, (A2)
C; = —1.8492817431, C; = —11.8272674286, C5 = —0.7138152947,

Ce = 7.0224266784, C; = 1.4476285900, Cg = —2.4512890639,

Cy = —0.7451197226, Cyo = 0.4745313849, C;; = 0.1651164438,

C1p = —0.0436858802, C;5 = —0.0147119639, C14 = 0.0012846915,

Cy5 = 0.0004718731;
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(c) for Equation (40) with Ny = 25:

wp = 0.0842084063, By = 113.1906313266, B, = 700.5143533516,
By = —63.8042262780, By = —1726.7156941065, Bs = —727.2541799033,

Be = 1850.2472856376, By = 1458.7090868963, By = —1023.3252919624,

By = —1371.45280473155, Byo = 192.8265190738, By = 763.9333733724,

By = 118.7239396963, By = —261.2640026833, Byy = —98.9226990064,

Bys = 51.1015243215, By = 33.0902447676, By; = —3.9323646180,

Big = —5.8957249378, Byg = —0.3704710427, By = 0.5357572940,

Bo; = 0.0886533581, By, = —0.0195324516, Byz = —0.0045186018,

Boy = 0.0001056260, Bys = 0.0000356013, C; = 237.0082862136, (A3)
C, = —181.1626337930, C3 = —1260.1800896233, C; = —266.1579780903,

Cs = 1943.0958639398, Cs = 1170.9065813163, C; = —1501.3433857085,

Cg = —1520.5635275053, Cy = 554.5650629146, Cyo = 1087.6826289541,

Cy1 = 26.0903663084, C1p = —475.6102111380, C15 = —128.1837256078,

Cy4 = 125.1740070213, Cy5 = 62.1706696066, C15 = —16.9073998070,

Cyy = —15.0951778584, Cy5 = 0.2064815885, C19 = 1.9508776536,

Coo = 02353541523, Cy = —0.1178869685, Cpp = —0.0237146201,

Cps = 0.0021457461, Cpy = 0.0005641598, Cps = 3.317757 - 10~°.

Now, for the initial conditions xg = —0.5, yo = —0.5, zg = 0.5 and Nyqx =25, § = 0.25
the convergence-control parameters for the symmetric solution (with respect to the Oz-axis) given
by Equation (40) are given in Equation (A3).

Appendix A.2. The Remarkable Case p =0, 01 = 0,00 =0, a3 =0

Example A2. The initial conditions are xo = 1.5, yo = 0.5, zg = 1.25.
(a) for Equation (41) with Nyx = 15:

wo = 0.1869876739, By = —554.4037761129, B, = 226.7457730999,
B; = 782.3721160745, B, = —48.5974967462, Bs = 49.4030334587,

Be = —957.7117203144, B, = 283.2006105162, Bg = —159.1917408848,

By = 674.7077918425, Byy = 23.5125177445, By; = —495.1189399730,

Bip = 141.3482748307, By; = 50.5506946689, By = —16.7536940267,

Bis = —0.0634441781, C; = —93.4671025566, C, = 1047.0086776914, (A4)
C3 = —495.9436000281, C; = —133.5434805609, C5 = —746.4077270771,

Ce = 236.7019711439, C; = 421.4165739752, Cg = 177.1891806165,

Co = 254.4730564674, C19 = —758.0078082782, Cyy = 147.8047599915,

Cip = 204.0625242583, C13 = —66.0059654899, Cy4 = —6.0287025308,

Ci15 = 1.8659955242;
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(b) for Equation (41) with Nyax = 25:

wp = 0.1869876739, By = 516.1242386938, B, = —370.2739755607,
By = —438.3744282729, B, = 232.6309328533, Bs = —282.3256743841,

Bg = 387.5617017331, B, = —47.8049293623, Bg = 162.7251241075,

By = —117.3367937705, By = 59.7546990652, By; = —111.8077188524,

By, = 71.8237012001, B3 = —149.4299059907, Bys = 60.2531991051,

Bis = —76.3055734495, Byg = 113.6663413024, By; = —16.3900394802,

Byg = 108.9340003143, Bjg = —91.5339247140, Byy = —72.0679666456,

Byy = 67.2469830900, By, = —0.6349607714, By; = —7.3149658364,

Boy = 0.8138266745, Bys = 0.0661089513, C; = 54.6954626367, (A5)
C, = —889.6642684770, C3 = 678.0047311577, Cq = —235.8685894546,

Cs = 401.5470307526, Cq = —43.0268550584, C; = 40.6366633629,

Cg = —169.6938622093, Cy = 23.4686692840, C19 = —115.4282122040,

Cyq = 73.1279637248, C1p = —92.7226387177, C13 = 55.3435319845,

Cia = 12.4804646698, C15 = 67.0157693986, Cy14 = 29.4365871710,

Cyy = —9.0367780737, C15 = —25.8911752609, C19 = —126.8226917481,

Coo = 103.3382634787, Cyy = 20.0135321168, Cyp = —27.9178547423,

Cpz = 2.5193238481, Cyy = 1.0883135883, Cps = —0.0948041290;

(c) for Equation (41) with Ny = 35:

wo = 0.1869876739, By = 27.1589347487, B, = 12.0827987658,
B; = —31.2924026686, By = —6.2126489550, Bs = —8.4925801994,
Bg = —13.9924569422, B; = 6.0373789169, Bg = 19.7307983361,

By = —1.4098763264, By = —23.1824059776, By, = 19.5047102382,
Byp = 18.0959242465, By; = —20.3437872078, Byy = —2.3657500207,
Bys = 8.0506645554, Byg = 2.1157429592, By, = 8.2577036885,

Big = —24.5293827842, Byg = 9.7431739692, Byy = —13.3366939523,
By; = 21.0972405836, By, = 1.3733966515, Bys = —10.4215638468,
By = —0.6346613181, Bys = 3.7660664321, Bys = —6.3989961662,
By = 14.1834202800, Byg = —8.4270149394, Byg = —5.0794721575,
Bsy = 6.5727871915, By, = —1.2212175488, By, = —0.6570547398,
Bss = 0.2354677108, Byy = —0.0056214482, Bss = —0.0026220746,
C; = 19.7054442097, C, = —54.4346582382, C3 = —0.8103617202,
Cy = —1.8697297809, C5 = 5.5410468189, Cg = 4.1456744599,

Cy = 25.1576973040, Cg = —4.3010254027, Cy = —18.3207242611,
Cyo = 9.5312211886, C1q = 21.8263082280, C1p = —20.0001654379,
Ci3 = —14.6586935042, C14 = 21.2392716691, Cq5 = —9.2030700586,
10.5290971616, C7 = —24.7946288753, Cy5 = 8.9376532008,
Cio = 1.1913707498, Cp = 8.9900769507, Cy; = 8.2043548306,

Cyy = —16.8096509190, Cp3 = —1.8558514640, Cpy = 8.7834639788,
Cys = —5.1597513330, Co = 69589549263, Coy = —0.6370483091,
Cog = —12.0432828958, Cp9 = 10.0288355195, C39 = 0.0799417017,
Cap = —2.6893238533, Cap = 0.7569825071, Ca3 = 0.0695529173,

Cas = —0.0388832605, C35 = 0.0017247410.

(A6)

(@]
N
|

Nouw, for the initial conditions: xo = —1.5, yg = —0.5, zg = 1.25 (symmetry with respect to
the Oz-axis) and Ny = 35, =0, xg = 1.5, yo = —0.5, zg = —1.25 (symmetry with respect to
the Ox-axis) and Nyax = 35, 3 =0, xg = —1.5, yo = 0.5, zg = —1.25 (symmetry with respect to
the Oy-axis) and Nyqax = 35, B = 0, the convergence-control parameters for the symmetric solution
(with respect to the Oz-axis) given by Equation (41) are given in Equation (A6).

Appendix A.3. The Case p = 0.25, a1 =0, ay = 0.05, a3 =0
Example A3. The initial conditions are xo = 0.5, yg = 0.5, zg = 0.5 and Ny = 25.
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The convergence-control parameters for the approximate analytic solution 1(t) given by
Equation (40) are:

wo = 0.0694543429, By = —69.5705751030, B, = —120.8993887304,
B = 134.8567394227, B, = 80.2715486367, Bs = 133.5091139810,

Bg = —1.6079535511, B; = —107.8296608169, Bg = —89.0630671934,
By = —153.5628496068, By = 103.8865887516, By; = 81.7020914138,
By = 124.0154016728, By; = 71.0190829276, Byy = —279.0140436547,
Bis = —47.4832381804, By = 186.4926850959, Byy = —1.6034548489,
Big = —58.0109625378, Byo = 5.9577818217, Byy = 8.6271212497,

By = —1.2371738255, By = —0.5383432616, By = 0.0738473761,

Boy = 0.0093636835, Bys = —0.0006547226, C; = —65.0212060551, (A7)
C, = 1469430296120, C3 = 122.0164695356, C4 = —12.7416766751,
Cs = —35.4755424788, Cq = —188.0064243933, C; = —37.3549977788,
Cg = —42.6527153638, Co = 125.7222674988, C1 = 160.3454312782,
Ci1 = —9.0512355641, Cyp = 144067469635, C13 = —234.7064480557,
Cia = —74.8990251987, Cy5 = 253.4010415854, C14 = 16.8710869660,
Ci7 = —113.8065189746, Ci5 = 7.2254321395, C19 = 24.6401183173,
Coo = —3.1759631665, Cy = —2.4394846206, Cop = 0.3573106958,
Cpz = 0.0874588482, Cpy = —0.0098968427, Cos = —0.0005010425 .

Appendix A.4. The Case p = 0.25, a1 = 0.05, 20 =0, a3 =0

Example A4. The initial conditions are xg = 0.5, yg = 0.5, zg = 0.5 and Ny = 25.
The convergence-control parameters for the approximate analytic solution 7(t) given by
Equation (40) are:

wo = 0.0979970641, B; = —7.86946701639623, B, = —6.4646829651,
B; = 8.7356943964, By = 16.3328135131, Bs = 5.1958788407,

By = —10.8702566280, B; = —12.6215405753, By = —1.5426658313,
By = 6.8534549134, By = 5.3338415271, By; = —0.1190016122,

B, = —2.4166370753, B1z = —1.2668179431, By4 = 0.1849844809,
Bis = 0.4668487148, Big = 0.1558661112, Byy = —0.0410984637,

Big = —0.0439753213, B1g = —0.0079302657, Byy = 0.0031640290,
By; = 0.0015152397, By, = 0.0000782713, Bys = —0.0000586884,

By = —7.908883 - 10~°, Bys = 2.571457 - 107, C; = —1.7097438990, (A8)
C, = 10.0351472420, C3 = 12.4760001691, C; = —2.2874375788,

Cs = —15.6734001521, Cy = —10.8070637066, C; = 4.2334673452,
Cg = 10.7552729215, Co = 4.7764382238, C19 = —2.8811116370,

Cy1 = —4.1426512477, C1p = —1.1302932517, Cy3 = 0.9994302741,
Ci14 = 0.8951531888, C;5 = 0.1235578694, C14 = —0.1781342705,
Ci7 = —0.0986544376, C13 = —0.0025652300, C19 = 0.0143255850,
Cao = 0.0043772770, Cp; = —0.0003038516, Cpr = —0.0003624506,
Cpz = —0.0000398691, Cyy = 5.795421 - 107, Cp5 = 7.292742 - 107 .

Appendix A.5. The Case p = 0,47 =0, ap =0, a3 = 0.15
Example A5. The initial conditions are xo = 1.5, yg = 0.5, zg = 1.25 and Nyax = 35.
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The convergence-control parameters for the approximate analytic solution 1(t) given by
Equation (42) are:

wp = 0.2172006104, B; = —7.3251070555, B, = —0.1087849966,
B; = 4.1113264263, By = 4.21373739429, Bs = 1.0687156558,

By = —1.5599721276, By = —1.43202796290, Bg = 0.7373618607,

By = 2.3909438155, Byy = 1.77937304336, B1; = —0.5409997087,
By = —2.5317090264, B1z = —2.67997580834, By = —1.1492629171,
Bys = 0.6922268586, B1g = 1.59791789658, By = 1.3153031289,

Bqg = 0.4470104143, Byg = —0.2651316628, Byy = —0.4881158033,
By = —0.3386938091, By, = —0.0985227111, Bys = 0.0470955155,
Bos = 0.0741216873, Bos = 0.0431448916, By, = 0.0106926238,

Byy = —0.0035675339, Byg = —0.0047137818, Byg = —0.0021456860,
B3y = —0.0004138394, Bs; = 0.0000775657, Bz, = 0.0000738535,

B3z = 0.0000199500, B3y = 1.929570 - 108, B35 = —8.095036 - 103,
C; = 4.8320147836, C, = 6.1545928815, C3 = 2.7172376117,

Cy = —0.9374420135, C5 = —2.9359918166, Cy = —1.5185091234,
Cy = 0.9997803324, Cg = 1.8049281860, Cy = 0.1894325635,

Cio = —2.1155718115, Cq; = —2.9032537901, C1p = —1.5215478343,
Ci3 = 0.7804328110, Cq14 = 2.2301227152, C15 = 2.0399788427,

Ci6 = 0.7655400005, Cy7 = —0.4739199152, C15 = —0.9603870342,
Ci9 = —0.7236971824, Cop = —0.2267309158, Cpq = 0.1229722256,
Cp = 0.2088434889, Cp3 = 0.1332553039, Cpy = 0.0359490437,

Cos = —0.0146330134, Cpe = —0.0212551967, Coy = —0.0111045215,
Cog = —0.0024764806, Cyg = 0.0006442642, C39 = 0.0007496569,
Cs = 0.0002808121, C3, = 0.0000431036, C33 = —4.960082 - 10,
Cay = —3.110982 - 107°, C35 = —3.647933-1077 .

(A9)

References

1.
2.

3.

10.
11.

12.
13.
14.
15.

16.
17.

Pikovskii, A.S.; Rabinovich, M.L. Stochastic behavior of dissipative systems. Soc. Sci. Rev. C Math. Phys. Rev. 1981, 2, 165-208.
Pikovskii, A.S.; Rabinovich , M.L; Trakhtengerts, V.Y. Onset of stochasticity in decay confinement of parametric instability. Soc.
Phys. JETP 1978, 47, 715-719.

Kuznetsov, N.V.; Leonov, G.A.; Mokaev, T.N.; Seledzhi, S.M. Hidden attractor in the Rabinovich system, Chua circuits and PLL.
AIP Conf. Proc. 2016, 1738, 210008. [CrossRef]

Xiang, Z. Integrals of motion of the Rabinovich system. J. Phys. A Math. Gen. 2000, 33, 5137. [CrossRef]

Tudoran, R.M.; Girban, A. On the Hamiltonian dynamics and geometry of the Rabinovich system. Discrete Cont. Dyn.-B 2011, 15,
789-823. [CrossRef]

Xie, F.; Zhang, X. Invariant algebraic surfaces of the Rabinovich system. J. Phys. A Math. Gen. 2003, 36, 499. [CrossRef]

Kocamaz, U.E.; Uyaroglu, Y.; Kizmaz, H. Control of Rabinovich chaotic system using sliding mode control. Int. J. Adapt. Control
2013, 28, 1413-1421. [CrossRef]

Lazureanu, C.; Caplescu, C. Stabilization of the T system by an integrable deformation. In Proceedings of the International
Conference on Applied Mathematics and Numerical Methods Third Edition, Craiova, Romania, 29-31 Octobe r2020. [CrossRef]
Braga, D.C.; Scalco, D.E; Mello, L.F. On the stability of the equilibria of the Rikitake system. Phys. Lett. A 2010, 374, 4316—-4320.
[CrossRef]

Rikitake, T. Oscillations of a system of disk dynamos. Proc. Camb. Philos. Soc. 1958, 54, 89-105. [CrossRef]

Steeb, W.H. Continuous symmetries of the Lorenz model and the Rikitake two-disc dynamo system. J. Phys. A Math. Gen. 1982, 15,
389-390. [CrossRef]

Binzar, T.; Lazureanu, C. On the symmetries of a Rabinovich type system. Sci. Bull. Math.-Phys. 2012, 57, 29-36.

Lazureanu, C.; Binzar, T. Symmetries of some classes of dynamical systems. J. Nonlinear Math. Phys. 2015, 22, 265-274. [CrossRef]
Lazureanu, C.; Petrisor, C.; Hedrea C. On a deformed version of the two-disk dynamo system. Appl. Math. 2021, 66, 345-372.
[CrossRef]

Lazureanu, C.; Petrisor, C. Stability and energy-Casimir Mapping for integrable deformations of the Kermack-McKendrick system.
Adv. Math. Phys. 2018, 2018, 5398768. [CrossRef]

Lazureanu, C. Integrable deformations of three-dimensional chaotic systems. Int. J. Bifurcat. Chaos 2018, 28, 71850066. [CrossRef]
Lazureanu, C. Hamilton-Poisson realizations of the integrable deformations of the Rikitake system. Adv. Math. Phys. 2017,
2017, 4596951. [CrossRef]


http://doi.org/10.1063/1.4951991
http://dx.doi.org/10.1088/0305-4470/33/28/315
http://dx.doi.org/10.3934/dcdsb.2011.15.789
http://dx.doi.org/10.1088/0305-4470/36/2/314
http://dx.doi.org/10.1002/acs.2450
http://dx.doi.org/10.1051/itmconf/20203403009
http://dx.doi.org/10.1016/j.physleta.2010.08.062
http://dx.doi.org/10.1017/S0305004100033223
http://dx.doi.org/10.1088/0305-4470/15/8/002
http://dx.doi.org/10.1080/14029251.2015.1033237
http://dx.doi.org/10.21136/AM.2021.0303-19
http://dx.doi.org/10.1155/2018/5398768
http://dx.doi.org/10.1142/S0218127418500669
http://dx.doi.org/10.1155/2017/4596951

Symmetry 2022, 14, 2185 20 of 21

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

29.
30.

31.
32.
33.
34.
35.
36.
37.
38.
39.

40.
41.

42.

43.

44.

45.

46.
47.

48.

49.

50.

51.

Lazureanu, C. The real-valued Maxwell-Bloch equations with controls: From a Hamilton-Poisson system to a chaotic one. Int. |.
Bifurcat. Chaos 2017, 27, 1750143. [CrossRef]

Lazureanu, C. On a Hamilton-Poisson approach of the Maxwell-Bloch equations with a control. Math. Phys. Anal. Geom. 2017,
3, 20. [CrossRef]

Lazureanu, C.; Binzar, T. Symmetries and properties of the energy-Casimir mapping in the ball-plate problem. Adv. Math. Phys.
2017, 2017, 5164602. [CrossRef]

Lazureanu, C.; Binzar, T. On some properties and symmetries of the 5-dimensional Lorenz system. Math. Probl. Eng. 2015, 2015,
438694. [CrossRef]

Lazureanu, C.; Binzar, T. Some symmetries of a Rossler type system. Sci. Bull. Math.-Phys. 2013, 58, 1-6.

Binzar, T.; Lazureanu, C. A Rikitake type system with one control. Discrete Contin. Dyn. Syst.-B 2013, 18, 1755-1776. [CrossRef]
Lazureanu, C.; Binzar, T. Symplectic realizations and symmetries of a Lotka-Volterra type system. Regul. Chaotic Dyn. 2013, 18,
203-213. [CrossRef]

Lazureanu, C.; Binzar, T. A Rikitake type system with quadratic control. Int. J. Bifurcat. Chaos 2012, 22, 1250274. [CrossRef]
Lazureanu, C.; Binzar, T. On the symmetries of a Rikitake type system. C. R. Math. Acad. Sci. Paris 2012, 350, 529-533. [CrossRef]
Lazureanu, C. On the Hamilton-Poisson realizations of the integrable deformations of the Maxwell-Bloch equations. C. R. Math.
Acad. Sci. Paris 2017, 355, 596-600. [CrossRef]

Candido Murilo, R.; Llibre, J.; Valls, C. New symmetric periodic solutions for the Maxwell-Bloch differential system. Math. Phys.
Anal. Geom. 2019, 22, 16. [CrossRef]

Liu, Y,; Yang, Q.; Pang G. A hyperchaotic system from the Rabinovich system. J. Comput. Appl. Math. 2010, 234, 101-113. [CrossRef]
David, D.; Holm, D. Multiple Lie-Poisson structures, reduction and geometric phases for the Maxwell-Bloch traveling wave
equations. J. Nonlinear Sci. 1992, 2, 241-262. [CrossRef]

Puta, M. On the Maxwell-Bloch equations with one control. C. R. Math. Acad. Sci. Paris 1994, 318, 679-683.

Puta, M. Three dimensional real valued Maxwell-Bloch equations with controls. Rep. Math. Phys. 1996, 37, 337-348. [CrossRef]
Arecchi, ET. Chaos and generalized multistability in quantum optics. Phys. Scr. 1985, 9, 85-92. [CrossRef]

Casu, I.; Lazureanu, C. Stability and integrability aspects for the Maxwell-Bloch equations with the rotating wave approximation.
Regul. Chaotic Dyn. 2017, 22, 109-121. [CrossRef]

Zuo, D.W. Modulation instability and breathers synchronization of the nonlinear Schrodinger Maxwell-Bloch equation. Appl.
Math. Lett. 2018, 79, 182-186. [CrossRef]

Wang, L.; Wang, Z.Q.; Sun, W.R,; Shi, Y.Y; Li, M.; Xu, M. Dynamics of Peregrine combs and Peregrine walls in an inhomogeneous
Hirota and Maxwell-Bloch system. Commun. Nonlinear Sci. 2017, 47, 190-199. [CrossRef]

Wei, ].; Wang, X.; Geng, X. Periodic and rational solutions of the reduced Maxwell-Bloch equations. Commun. Nonlinear Sci. 2018,
59, 1-14. [CrossRef]

Binzar, T.; Lazureanu, C. On some dynamical and geometrical properties of the Maxwell-Bloch equations with a quadratic control.
J. Geom. Phys. 2013, 70, 1-8. [CrossRef]

Puta, M. Integrability and geometric prequantization of the Maxwell-Bloch equations. Bull. Sci. Math. 1998, 122, 243-250.
[CrossRef]

Llibre, J.; Valls, C. Global analytic integrability of the Rabinovich system. J. Geom. Phys. 2008, 58, 1762-177. [CrossRef]

Herisanu, N.; Marinca, V. Accurate analytical solutions to oscillators with discontinuities and fractional-power restoring force by
means of the optimal homotopy asymptotic method. Comput. Math. Appl. 2010, 60, 1607-1615. [CrossRef]

Marinca, V.; Herisanu, N. The Optimal Homotopy Asymptotic Method—Engineering Applications; Springer: Heidelberg, Germany,
2015.

Marinca, V.; Herisanu, N. An application of the optimal homotopy asymptotic method to Blasius problem. Rom. . Tech. Sci. Appl.
Mech. 2015, 60, 206-215.

Marinca, V.; Herisanu, N. Nonlinear dynamic analysis of an electrical machine rotor-bearing system by the optimal homotopy
perturbation method. Comp. Math. Appl. 2011, 61, 2019-2024. [CrossRef]

Marinca, V.; Ene, R.D.; Marinca, B. Optimal Homotopy Perturbation Method for nonlinear problems with applications. Appl.
Comp. Math. 2022, 21, 123-136.

Turkyilmazoglu, M. An optimal variational iteration method. Appl. Math. Lett. 2011, 24, 762-765. [CrossRef]

Marinca, V.; Draganescu, G.E. Construction of approximate periodic solutions to a modified van der Pol oscillator. Nonlinear Anal.
Real World Appl. 2010, 11, 4355-4362. [CrossRef]

Caruntu, B.; Bota, C.; Lapadat, M.; Pasca, M.S. Polynomial Least Squares Method for Fractional Lane-Emden Equations. Symmetry
2019, 11, 479. [CrossRef]

Bota, C.; Caruntu, B,; Tucu, D.; Lapadat, M.; Pasca, M.S. A Least Squares Differential Quadrature Method for a Class of Nonlinear
Partial Differential Equations of Fractional Order. Mathematics 2020, 8, 1336. [CrossRef]

Amer, TS.; Bek, M.A.; Hassan, S.S.; Sherif Elbendary. The stability analysis for the motion of a nonlinear damped vibrating
dynamical system with three-degrees-of-freedom. Results Phys. 2021, 28, 104561. [CrossRef]

El-Rashidy, K.; Seadawy Aly, R.; Saad, A.; Makhlou, M.M. Multiwave, Kinky breathers and multi-peak soliton solutions for the
nonlinear Hirota dynamical system. Results Phys. 2020, 19, 103678. [CrossRef]


http://dx.doi.org/10.1142/S0218127417501437
http://dx.doi.org/10.1007/s11040-017-9251-3
http://dx.doi.org/10.1155/2017/5164602
http://dx.doi.org/10.1155/2015/438694
http://dx.doi.org/10.3934/dcdsb.2013.18.1755
http://dx.doi.org/10.1134/S1560354713030015
http://dx.doi.org/10.1142/S0218127412502744
http://dx.doi.org/10.1016/j.crma.2012.04.016
http://dx.doi.org/10.1016/j.crma.2017.04.002
http://dx.doi.org/10.1007/s11040-019-9313-9
http://dx.doi.org/10.1016/j.cam.2009.12.008
http://dx.doi.org/10.1007/BF02429857
http://dx.doi.org/10.1016/0034-4877(96)84072-9
http://dx.doi.org/10.1088/0031-8949/1985/T9/013
http://dx.doi.org/10.1134/S1560354717020010
http://dx.doi.org/10.1016/j.aml.2017.12.019
http://dx.doi.org/10.1016/j.cnsns.2016.11.009
http://dx.doi.org/10.1016/j.cnsns.2017.10.017
http://dx.doi.org/10.1016/j.geomphys.2013.03.016
http://dx.doi.org/10.1016/S0007-4497(98)80089-4
http://dx.doi.org/10.1016/j.geomphys.2008.08.009
http://dx.doi.org/10.1016/j.camwa.2010.06.042
http://dx.doi.org/10.1016/j.camwa.2010.08.056
http://dx.doi.org/10.1016/j.aml.2010.12.032
http://dx.doi.org/10.1016/j.nonrwa.2010.05.021
http://dx.doi.org/10.3390/sym11040479
http://dx.doi.org/10.3390/math8081336
http://dx.doi.org/10.1016/j.rinp.2021.104561
http://dx.doi.org/10.1016/j.rinp.2020.103678

Symmetry 2022, 14, 2185 21 of 21

52. Hussain, S.; Shah, A.; Ayub, S.; Ullah, A. An approximate analytical solution of the Allen-Cahn equation using homotopy
perturbation method and homotopy analysis method. Heliyon 2019, 5, e03060. [CrossRef]

53. Wang. X.; Xu, Q.; Atluri, S.N. Combination of the variational iteration method and numerical algorithms for nonlinear problems.
Appl. Math. Model. 2020, 79, 243-259. [CrossRef]

54. Marinca, V.; Herisanu, N. Approximate analytical solutions to Jerk equation. In Springer Proceedings in Mathematics & Statistics:
Proceedings of the Dynamical Systems: Theoretical and Experimental Analysis, Lodz, Poland, 7-10 December 2015; Springer: Cham,

Switzerland, 2016; Volume 182, pp. 169-176.


http://dx.doi.org/10.1016/j.heliyon.2019.e03060
http://dx.doi.org/10.1016/j.apm.2019.10.034

	Introduction
	The Rabinovich System
	Global Analytic First Integrals and Hamilton-Poisson Realization 
	Closed-Form Solutions

	Approximate Analytic Solutions via OAFM
	Numerical Results and Discussions
	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3
	Appendix A.4
	Appendix A.5

	References

